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The most familiar test for two sample location problem is the parametric t test and non parametric 
wilcoxon test provided the parent distribution is normal. But if the data set follows a skewed 
distribution then these two tests may give an inaccurate result. In this paper it is tried to give a 
solution to this problem by the use of adaptive tests. Power comparisons are made here between t 
test, wilcoxon test and proposed adaptive tests by monte carlo simulation method. 
 
 
 
 
 
 
 
  

  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

INTRODUCTION  
 

One of the fundamental problems of statistics, often 
encountered in applications, is the two-sample location 
problem.  In the two-sample location problem the application 
of the t-test depends on very restrictive assumptions such as 
normality and equal variances of the two random variables X1 
and X2. If the assumptions of the t-test are not satisfied it is 
more appropriate to apply a robust version of the t-test, like the 
Welch test or the trimmed t-test, or a nonparametric test, like 
the Wilcoxon. But usually we have no information about the 
underlying distribution of the data. Therefore, an adaptive test 
should be applied. It would be desirable, therefore to use data 
itself to determine the nature of F(.), and on the basis of that 
information, we could choose an appropriate set of scores. We 
would then use that same data to perform the test.  Such two-
stage analyses are termed as adaptive test.  In the past seven 
decades many important distribution free tests for differences 
in location between samples had been developed. In the mid 
1940s the Wilcoxon -Mann- Whitney test was introduced for 
testing differences in location between two samples and it was 
developed by Wilcoxon and extended by Mann and Whitney. 
But further, it turns out that there exist simple adaptive rank 
tests that can discover differences between distributions more 
easily than WMW tests. These adaptive non parametric 
procedures display significant improvements in power over the 
parametric t- test in samples of large and moderate sizes. The 

purpose of this chapter is two folds, first to introduce the 
selector statistics, secondly compare the t-test with adaptive 
distribution-free test like Wilcoxon test, test based on scores 
under normality and under different models of nonnormality, 
like heavy tailed or asymmetric distributions   Adaptive tests 
are important in applications because the practicing statistician 
usually has no information about the underlying distribution. 
The adaptive testing procedures that are truly nonparametric 
distribution-free. That is, the two stages of the inference 
process are constructed in such a way that it control the overall  
 level. Monte-Carlo simulations are used for comparison of- ߙ
the tests with respect to level ߙ and powerߚ. 
 

Selector statistics for selection of test  
 

We apply the concept of Hogg (1974) that is based on 
following lemma: 
 

1. Let F denote the class of distributions under 
consideration. Suppose that each of k tests  T1, T2, …, Tk 
is distribution –free over F , that is ܲݎு( ܶ ∈ (ܥ =    ߙ
for each F∈F ,  h = 1, . . ., k. 

2. Let S be some statistic (called a selector statistic) that is, 
under Ho, independent of T1, . . . , Tk for each F∈F. 
Suppose we use S to decide which test Th to conduct. 
Specially, let Ms denote the set of all values of S with the 
following decomposition: Ms = ܦଵ ∪ ଶܦ ∪ … 	∪ ܦ , ܦ ∩
ܦ = ݅	ݎ݂	∅ ≠ ݆.  So that ܵ ∈   corresponds to theܦ
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decision to use test ܶ. 
 

The overall testing procedure is then defined by: If ܵ ∈   ܦ
then reject Ho if ܶ ∈  . This two-staged adaptive test isܥ
distribution-free under Ho over the class F   ,i.e. it maintains 
the level ߙ  for each F∈F. 
 

The proof of this lemma is given by Randle and 
Wolfe(1979).Using the lemma, as a selector statistic, we use a 
function of order statistics of combined sample. We choose the 
selector statistic as 
 

S   = (ܳଵ	  , ܳଶ ) 
 
 
 
 
 
 
 
Where  

ܳଵ =
ܷ.ହ .ହܯ−

.ହܯ − .ହܮ
 

and 

ܳଶ =
ܷ.ହ − .ହܮ
ܷ.ହ − .ହܮ

 
 

And Hogg’s(1974) measures for skewness and tailweight, and 
 ఊ  and ܷఊ denote the average of the smallest , middle andܯ , ఊܮ
largest ܰߛ  order statistics, respectively, in the combined 
sample; fractional items are used when ܰߛ is not an integer. 
Obviously ܳଵ= 1 if the data are symmetric and ܳଵ<1 (>1) if the 
data are skewed to the left(right). The longer the tails the 
greater is ܳଶ. Table 1 shows the theoretical measures of  Q1 and 
Q2 for selected distributions. As in Buning (1996), we define 
the adaptive test as follows (Fig..1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If  ܳଵ ≤ 2, ܳଶ ≤ 2   perform the Gastwirth test, 
If  ܳଵ ≤ 2,			2 < ܳଶ ≤ 3   perform Wilcoxon test, 
If ܳଵ > 2,			2 < ܳଶ ≤ 3   perform HFR test, and 
If ܳଶ>3   perform the LT test. 

However, sometimes a larger critical value for ܳଶ   was used to 
differentiate between tests(Hogg1975). Therefore, we define a 
second adaptive test as follows: 
If  ܳଵ ≤ 2, ܳଶ ≤ 2   perform the Gastwirth test, 
If  ܳଵ ≤ 2,			2 < ܳଶ ≤ 5   perform Wilcoxon test, 
If ܳଵ > 2,			2 < ܳଶ ≤ 5   perform HFR test, and 
If ܳଶ>5   perform the LT test. 
 

Test Procedures 
  

Let xi1,xi2, ..., xin i , i = 1,2  be independent random samples from 
parent populations with continuous distribution function F[(x-

i )] . Let   i   represent the location parameters and i   the 
scale parameters of the populations assumed to be same. The 
problem is to test Ho:  1 =  2 against  H1:  1    2  or  
 1 >  2 or   1 <  2. In our case we have considered only 
the alternative  1 >  2. For testing this hypothesis the 
procedures are  
 

Student’s  t- test 
 

t =  

)11(
21

2
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                                                           (2.1) 
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are the means and variances of  the two samples. The statistic t 
follows Student’s t distribution with 1n  + 2n -2 degrees of 
freedom. 
 

Wilcoxon Test 
 

W =  ∑ ࡺࢆ
ୀ   , N= n1 + n2     

Where  Zi is a indicator variable. It take the value 1, if the ith 
observation from first sample and zero ,otherwise. 
 

Two sample tests based on some scores 
 

T= ∑ ݃(݅) ܸ
ே
ୀଵ  

 

where ݃(i) are real valued scores, and Vi =  1 when the ith 
smallest of the N=n1+n2 observation s is from the first sample 
and Vi = 0 otherwise. Two-sample tests on T are distribution –
free, under Ho, we have 
 

E(T) = భ
ே
∑ ݃(݅)ே
ୀଵ   

 

Var(T) = భమ
ேమ(ேିଵ)

[ܰ∑ ݃ଶ(݅) − (∑ ݃(݅)ଶே
ୀଵ

ே
ୀଵ ] 

 

And the standardized statistic 
 

ܶ − (ܶ)ܧ
ඥܸܽݎ(ܶ)

 
 

Follows asymptotically a standard normal distribution (Hajek 
et al. 1999).When some condition about the scores ݃(i) are 
fulfilled, T can be asymptotically normal under an alternative, 
too (Chernoff and Savage, 1958). However, in general, the 

Table 1 Theoretical values of Q1 and Q2 for selected 
distributions 

 

Distribution Q1 Q2 
Uniform(0,1) 

Normal 
Exponential(with λ=1) 

1 
1 

4.569 

1.9 
2.585 
2.864 
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rejection probability under the alternative depends on the 
distribution of the data. Therefore, different choices for scores 
݃(݅) were proposed. 
 

Now we will discuss some scores on which  adaptive tests A(s) 
based such as  short tailed test, medium tests, long tailed tests 
and right skewed tail tests.  
 

Gastwirth test (short tails) 
 

݃(݅) =

⎩
⎪
⎨

⎪
⎧ ݅ −

ܰ + 1
4 ݅				ݎ݂						 ≤

ܰ + 1
4

				ݎ݂											0
ܰ + 1

4 ≤ ݅ ≤
3(ܰ + 1

4

݅ −
3(ܰ + 1)

4 ݅			ݎ݂					 ≥
3(ܰ + 1)

4

 

 
Wilcoxon test (median tails):  ݃(݅) = ݅ 
Long tails Test (long tails): 
 

݃(݅) =

⎩
⎪
⎨

⎪
⎧ −൬

ܰ
4
൨+ 1൰ ݅				ݎ݂				 < 

ܰ
4
൨ + 1

݅ −
ܰ + 1

2 					ݎ݂					 
ܰ
4
൨+ 1 ≤ ݅ ≤ [

3(ܰ + 1)
4 ]


ܰ
4
൨+ ݅				ݎ݂				1 > [

3(ܰ + 1)
4 ]

 

 

Hogg-Fisher- Randles(HFR) test (right skewed) 
 

݃(݅) = 	 ൝
݅ − ேାଵ

ଶ
݅					ݎ݂					 ≤ ேାଵ

ଶ

݅			ݎ݂						0 > ேାଵ
ଶ

   

 

The Monte Carlo Study 
 

For the simulation study of the t- test, Wicoxon test, Gastwirth 
test, Long-tail test and short-tail test (HFR) six families of 
distributions are selected. These are-the Normal, the Logistic 
and the Exponential. In studying the significant levels, we first 
considered distributions with location parameter equal to zero 
and with equal scale parameters. Specifically, we considered 
the distribution functions F(x -ߤ ), where ߤ were the location 

parameters. For each set of sample N = 
i

ni , i =1,2  , the 

experiment was repeated 5,000 times and proportion of 
rejection of the true null hypothesis was recorded and presented 
in table 2  to 4.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(mean1,mean2)   

Pr
ob

ab
ili

ty
 o

f 
re

je
ct

io
n

(0,2)(0,1.5)(0,1)(0,.5)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

Variable

HFR
T
W

G
LT

Power of Tests under Normal Dist.

 
 

Fig 2 Empirical power of tests under Normal distribution for n1=n2=30 at 
5% level 
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Fig 3 Empirical power of tests under Normal distribution for n1=25, n2=30 
at 5% level 
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Fig 4 Empirical power of tests under Logistic distribution for n1=n2=30 at 
5% Level 

 

Table 2 Empirical Level and power of tests under Normal distribution for equal sample sizes 
 

Sample sizes 
ni 

Location 
parameter µi 

G 
5%       1% 

LT 
5%        1% 

HFR 
5%        1% 

T 
5%       1% 

W 
5%       1% 

30   30 
 
 
 
 

25   30 
 
 

0   0 
0   0.5 
0   1.0 
0   1.5 
0   2.0 
0   0 

0   0.5 
0   1.0 
0   1.5 
0   2.0 

.0547   .0032 

.1609   .0190 

.4588   .1152 
,7625    .3595 
.9301  .6579 
.0534   .0086 
.3870   .1556 
.9098   .7202 
.9990   .9842 
1.000   .9998 

.0542    .0096 

.1738    .0534 

.5110    .2544 
.8388   .6126 
.9695    .8838 
.0532   .0100 
.3794   .1738 
.9076   .7540 
.9984   .9902 
1.000   1.000 

.0551    .0082 
.1847   .2952 
.5206   .3802 
.8122   .5089 
.9742   .7007 
.0526   .0098 
.3634   .1596 
.8858   .7138 
.9960   .9794 
1.000   .9980 

.0540   .0106 
.1951    .0631 
.5675   .3059 
.8874   .6789 
.9874  .9288 
.0612  .0122 
.4608   .2446 
.9516   .8598 
1.000   .9986 
1.000   1.000 

.0559   .0097 
.1947    .0558 
.5523   .2732 
.8758    .6380 
.9828    .9056 
.0560   .0088 
.4282   .1974 
.9398   .8032 
.9996   .9954 
1.000   1.000 
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DISCUSSION 
 

For comparison purposes we have considered various 
combinations of sample sizes with equal and unequal sample 
sizes. We have also considered different sets of µi’s for the 
study. 
 

Table 2 shows the power of tests under normal distribution for 
equal and unequal sample sizes respectively.  We have seen 
that power of   t- test is higher than the other tests in this 
distribution in presence of various combinations of location 
parameters and sample sizes. Power of Wilcoxon test is found 
to be slightly less than the t-test but more than other score base 
tests in both the two cases.  
  

Table 3 displays the power of tests under logistic distribution. 
We have seen that   Wilcoxon, t- test and LT test are more 
powerful than other two tests with both equal and unequal 
 
 
 
 
 
 
 
 
 
 
 
 
 
sample sizes and at 5% and 1% level. However,  power of W 
test is more than all tests. 
 

Table 4 shows the empirical power of tests under exponential 
distribution. Here we obtained similar results as like the 
lognormal distribution. That is, power of HFR is the highest of 
all followed by Wicoxon, G and others.  
 

CONCLUSION 
 

In case of symmetric distribution, under equal variances t-test 
is most the preferable test, as it maintain levels and shows more 
power than other tests. In case of skewed distribution  rank test 
or score based test may be more preferable. The choice of a 
suitable rank test or score based test which is more efficient 
than t-test depends on the underlying distribution of data. 
Because the practicing statistician usually has no clear idea 
about the distribution, an adaptive test should be applied which 
takes into account the given data set. 
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Fig 5 Empirical power of tests under Logistic distribution for n1=25 n2=30 
at 5% level 

 

 

Table 3 Empirical level and power of tests under Logistic distribution for equal sample sizes 
 

Sample sizes 
ni 

Location 
parameter µi 

G 
5%         1% 

LT 
5%          1% 

HFR 
5%         1% 

T 
5%         1% 

W 
5%         1% 

30   30 
 
 
 
 

25     30 
 

0   0 
0   0.5 
0   1.0 
0   1.5 
0   2.0 
0   0 

0   0.5 
0   1.0 
0   1.5 
0   2.0 

.0481    .0085 

.1592    .0427 

.4739    .2233 

.7939    .5470 

.9572    .8327 
.0496  .0064 
.1516   .0372 
.4504   .1978 
.7614   .4954 
.9334   .7784 

.0483   .0082 

.1863   .0637 

.5646   .3192 

.8849   .7141 

.9880   .9424 

.0508   .0104 

.1820   .0578 
.5190  .2872 
.8534   .6454 
.9804   .9132 

.0483   .0073 

.1640   .0503 

.4879   .2531 

.8223   .6012 

.9658   .8753 

.0468   .0112 
.1646    .0526 
.4732    .2496 
.7982    .5774 
.9576    .8558 

.0499   .0083 

.1873   .0610 

.5622   .3169 
.8777    .7034 
.9867   .9370 
.0558  .0124 
.1946  .0722 
.5506  .3270 
.8566  .6888 
.9804   .9256 

.0498   .0079 

.1934   .0646 

.5880   .3354 

.8978   .7373 

.9912   .9521 

.0500   .0096 
.1894    .0598 
.5496    .3020 
.8736    .6744 
.9864    .9242 

 

Table 4 Empirical level and power of tests under Exponential distribution for equal sample sizes 
 

Sample sizes 
ni 

Location 
parameter µi 

G 
5%         1% 

LT 
5%         1% 

HFR 
5%         1% 

T 
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30   30 
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Fig 5 Empirical power of tests under Logistic distribution for n1=25 n2=30 
at 5% level 

 
Table 4 Empirical level and power of tests under Exponential distribution for equal sample sizes 
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Fig 6 Empirical power of tests under Exponential distribution for n1=n2=30 
at 5% level 
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