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The most familiar test for two sample location problem is the parametric t test and non parametric
wilcoxon test provided the parent distribution is normal. But if the data set follows a skewed
distribution then these two tests may give an inaccurate result. In this paper it is tried to give a
solution to this problem by the use of adaptive tests. Power comparisons are made here between t
test, wilcoxon test and proposed adaptive tests by monte carlo simulation method.
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INTRODUCTION

One of the fundamental problems of statistics, often
encountered in applications, is the two-sample location
problem. In the two-sample location problem the application
of the t-test depends on very restrictive assumptions such as
normality and equal variances of the two random variables X;
and X,. If the assumptions of the t-test are not satisfied it is
more appropriate to apply a robust version of the t-test, like the
Welch test or the trimmed t-test, or a nonparametric test, like
the Wilcoxon. But usually we have no information about the
underlying distribution of the data. Therefore, an adaptive test
should be applied. It would be desirable, therefore to use data
itself to determine the nature of F(.), and on the basis of that
information, we could choose an appropriate set of scores. We
would then use that same data to perform the test. Such two-
stage analyses are termed as adaptive test. In the past seven
decades many important distribution free tests for differences
in location between samples had been developed. In the mid
1940s the Wilcoxon -Mann- Whitney test was introduced for
testing differences in location between two samples and it was
developed by Wilcoxon and extended by Mann and Whitney.
But further, it turns out that there exist simple adaptive rank
tests that can discover differences between distributions more
easily than WMW tests. These adaptive non parametric
procedures display significant improvements in power over the
parametric t- test in samples of large and moderate sizes. The
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purpose of this chapter is two folds, first to introduce the
selector statistics, secondly compare the t-test with adaptive
distribution-free test like Wilcoxon test, test based on scores
under normality and under different models of nonnormality,
like heavy tailed or asymmetric distributions Adaptive tests
are important in applications because the practicing statistician
usually has no information about the underlying distribution.
The adaptive testing procedures that are truly nonparametric
distribution-free. That is, the two stages of the inference
process are constructed in such a way that it control the overall
a -level. Monte-Carlo simulations are used for comparison of
the tests with respect to level a and powerp.

Selector statistics for selection of test

We apply the concept of Hogg (1974) that is based on
following lemma:

1. Let F denote the class of distributions under
consideration. Suppose that each of k tests Ty, To, ..., T
is distribution —free over F , that is Pry,(T; € C;) = a
foreach FeEF, h=1,.. .k

2. Let S be some statistic (called a selector statistic) that is,
under Ho, independent of Ty, . . ., Ty for each FeF.
Suppose we use S to decide which test T, to conduct.
Specially, let M denote the set of all values of S with the
following decomposition: Ms=D; UD, U ... U Dy, D; N
D;=@ fori+#j. So that S€ D, corresponds to the
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decision to use test T},.

The overall testing procedure is then defined by: If S € D,
then reject Ho if T, € C;,. This two-staged adaptive test is
distribution-free under Ho over the class F ,i.e. it maintains
the level a for each FeF.

The proof of this lemma is given by Randle and
Wolfe(1979).Using the lemma, as a selector statistic, we use a
function of order statistics of combined sample. We choose the
selector statistic as

S =(Q:.0)

Table 1 Theoretical values of Q; and Q, for selected
distributions

Distribution Q Q2
Uniform(0,1) 1 1.9
Normal 1 2.585
Exponential(with A=1) 4569 2.864
Where
— _ Ug.os — My s
1 - P ~
Moy s — Lo os
and
5 M
, =
Uo. - Lo 5

And Hogg’ 5(1974) measures for skewness and tailweight, and
L M and U denote the average of the smallest , middle and
Iargest yN order statistics, respectively, in the combined
sample; fractional items are used when yN is not an integer.
Obviously Q,= 1 if the data are symmetric and Q,<1 (>1) if the
data are skewed to the left(right). The longer the tails the
greater is Q,. Table 1 shows the theoretical measures of Q; and
Q. for selected distributions. As in Buning (1996), we define
the adaptive test as follows (Fig..1)

A

Q

long tail scores

Wilcoxon scores

Right

2 Skewed

score

Short tail scores

A4

Q1

0 2

If Q, <2,Q, <2 perform the Gastwirth test,
If 0, <2, 2<Q, <3 perform Wilcoxon test,
IfQ, >2, 2<Q,<3 performHFR test, and
If Q,>3 perform the LT test.

However, sometimes a larger critical value for §, was used to
differentiate between tests(Hoggl1975). Therefore, we define a
second adaptive test as follows:

If 0, <2,0, <2 perform the Gastwirth test,

If 0, <2, 2<Q, <5 perform Wilcoxon test,

IfQ,>2, 2<Q,<5 performHFR test, and

If Q,>5 perform the LT test.

Test Procedures

Let Xi1,Xio, ..., Xin, i = 1,2 be independent random samples from
parent populations with continuous distribution function F[(x-
M;i)]. Let o represent the location parameters and o; the
scale parameters of the populations assumed to be same. The
problem is to test Ho: ;= t,against Hy: (4, # U, or
Hi1> Hor Wq< M, Inourcase we have considered only
the alternative f¢, > i, For testing this hypothesis the
procedures are

Student’s t- test

X, — X,

e N ¢4
SP(—+-)
nl n2
n, —=1)s? +(n, —1)s? -
whereszz(1 S, + (N, )2;and X, ’s and S s

n,+n, -2
are the means and variances of the two samples. The statistic t
follows Student’s t distribution with N, + N, -2 degrees of
freedom.
Wilcoxon Test
W=3YN.izZ, ,N=n; +n,

Where Z; is a indicator variable. It take the value 1, if the ith
observation from first sample and zero ,otherwise.

Two sample tests based on some scores

T=XL, 9@V,

where g(i) are real valued scores, and V; = 1 when the ith
smallest of the N=n;+n, observation s is from the first sample
and V; = 0 otherwise. Two-sample tests on T are distribution —
free, under Ho, we have

E(M =22, 9()
[INZE, 92() — &L, 9()?]
And the standardized statistic

T — E(T)

Var(T)

Follows asymptotically a standard normal distribution (Hajek
et al. 1999).When some condition about the scores g(i) are
fulfilled, T can be asymptotically normal under an alternative,
too (Chernoff and Savage, 1958). However, in general, the
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rejection probability under the alternative depends on the
distribution of the data. Therefore, different choices for scores
g(i) were proposed.

Now we will discuss some scores on which adaptive tests A(s)
based such as short tailed test, medium tests, long tailed tests
and right skewed tail tests.

Gastwirth test (short tails)

( N+1 ,<N+1

| i-— for i< 7
N+1 3(W+1

g(@) =10 for 7 <i< 2
I 3(1v+1) 3(N + 1)
ST )

li— for iz )

Wilcoxon test (median tails): g(i) =i
Long tails Test (long tails):

([ ]+1) for l<[ ]+1

|
g@) = { N_+1 for [Z] t1<is [3(N + 1)]
lk [4]+1 for i>[w]

Hogg-Fisher- Randles(HFR) test (right skewed)
i— % for i< w
N+1

0 for [>—

g =

The Monte Carlo Study

For the simulation study of the t- test, Wicoxon test, Gastwirth
test, Long-tail test and short-tail test (HFR) six families of
distributions are selected. These are-the Normal, the Logistic
and the Exponential. In studying the significant levels, we first
considered distributions with location parameter equal to zero
and with equal scale parameters. Specifically, we considered
the distribution functions F(x -y; ), where u; were the location

parameters. For each set of sample N = Z ni, i=12 ,the
i

experiment was repeated 5,000 times and proportion of

rejection of the true null hypothesis was recorded and presented

in table 2 to 4.

Power of Tests under Normal Dist.
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Fig 2 Empirical power of tests under Normal distribution for n;=n,=30 at

Fi

5% level

Power of Tests under Normal Dist.
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3 Empirical power of tests under Normal distribution for n;=25, n,=30
at 5% level

Power of Tests under Logistic Dist.
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Fig 4 Empirical power of tests under Logistic distribution for n;=n,=30 at

5% Level

Table 2 Empirical Level and power of tests under Normal distribution for equal sample sizes

Sample sizes Location G LT HFR T W

n; parameter L; 5% 1% 5% 1% 5% 1% 5% 1% 5% 1%
00 .0547 .0032 .0542 .0096 .0551 .0082 .0540 .0106 .0559 .0097

30 30 0 05 1609 .0190 1738 .0534 1847 2952 1951 0631 1947 .0558
0 1.0 4588 .1152 5110 .2544 5206 .3802 5675 .3059 5523 .2732

0 15 ,7625 .3595 .8388 .6126 .8122 5089 .8874 .6789 .8758 .6380

0 20 .9301 .6579 9695 .8838 .9742 7007 .9874 .9288 .9828 .9056

00 .0534 .0086 .0532 .0100 .0526 .0098 0612 .0122 .0560 .0088

25 30 0 05 .3870 .1556 3794 1738 3634 .1596 4608 .2446 4282 1974
0 1.0 .9098 .7202 9076 .7540 .8858 .7138 .9516 .8598 .9398 .8032

0 15 .9990 .9842 .9984 .9902 .9960 .9794 1.000 .9986 .9996 .9954

0 20 1.000 .9998 1.000 1.000 1.000 .9980 1.000 1.000 1.000 1.000
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Table 3 Empirical level and power of tests under Logistic distribution for equal sample sizes

Sample sizes Location G LT HFR T W
n; parameter p; 5% 1% 5% 1% 5% 1% 5% 1% 5% 1%
00 .0481 0085 .0483 .0082 .0483 .0073 .0499 0083 .0498 0079
30 30 0 05 1592 0427 1863 .0637 1640 .0503 1873 .0610 1934 0646
0 10 4739 2233 5646 .3192 4879 2531 5622 .3169 5880 .3354
015 7939 5470 8849 7141 8223 6012 8777 7034 8978 7373
0 20 9572 8327 9880 .9424 9658 .8753 9867 .9370 9912 9521
00 .0496 .0064 .0508 .0104 0468 0112 .0558 .0124 .0500 .0096
25 30 0 05 1516 .0372 1820 .0578 1646 0526 1946 .0722 1894 0598
0 10 4504 1978 5190 .2872 4732 2496 5506 .3270 5496 3020
015 7614 4954 8534 6454 7982 5774 .8566 .6888 8736 6744
0 20 9334 7784 9804 9132 9576 8558 9804 .9256 9864 9242
power of Tests under Logistic Dist. DISCUSSION
1.0 o L For comparison purposes we have considered various
0. e combinations of sample sizes with equal and unequal sample
— —a- T sizes. We have also considered different sets of ;’s for the
Kel w
% o] study.
Q - - -
% 061 Table 2 shows the power of tests under normal distribution for
2 os] equal and unequal sample sizes respectively. We have seen
E 0al that power of t- test is higher than the other tests in this
g 0 distribution in presence of various combinations of location
' parameters and sample sizes. Power of Wilcoxon test is found
0214 to be slightly less than the t-test but more than other score base
01, , , , tests in both the two cases.
©,.5 (0,1) (0,1.5) 0,2)

(meanl,mean2)

Fig 5 Empirical power of tests under Logistic distribution for n;=25 n,=30

at 5% level

Table 3 displays the power of tests under logistic distribution.
We have seen that Wilcoxon, t- test and LT test are more
powerful than other two tests with both equal and unequal

Table 4 Empirical level and power of tests under Exponential distribution for equal sample sizes

Sample sizes Location G LT HFR T W
n; parameter L; 5% 1% 5% 1% 5% 1% 5% 1% 5% 1%
00 .0481 0085 .0483 0082 .0483 0073 .0483 0087 .0498 0079
30 30 005 8464 5982 6474 4202 9235 7844 5051 2771 7633 5373
0 1.0 9907 .9181 9903 .9610 9997 9988 9540 8680 9942 9752
0 15 9993 9873 1.000 .9991 1.000 1.000 9991 9951 1.000 .9996
0 20 1.000 .9981 1.000 1.000 1.000 1.000 1.000 .9999 1.000 1.000
00 0496 .0064 .0508 .0104 0468 0112 .0488 .0104 0500 .0096
25 30 0 05 8370 .5912 5908 3628 8910 .7330 5038 .2860 7252 4796
0 10 9914 9246 9764 9204 19998 .9966 9466 8582 9912 .9546
0 15 9998 9860 9996 .9982 1.000 1.000 9988 .9924 9998 9994
0 20 1.000 .9980 1.000 1.000 1.000 1.00 1.000 1.000 1.000 1.000
sample sizes and at 5% and 1% level. However, power of W
power of Tests under Exponential Dist. test is more than all tests.
. Variable . A
e Table 4 shows the empirical power of tests under exponential
el distribution. Here we obtained similar results as like the
w lognormal distribution. That is, power of HFR is the highest of

Probability of rejection

0.5 /

©5) ©1) ©15)
(meanl,mean2)

©02)

Fig 6 Empirical power of tests under Exponential distribution for n;=n,=30

at 5% level

all followed by Wicoxon, G and others.
CONCLUSION

In case of symmetric distribution, under equal variances t-test
is most the preferable test, as it maintain levels and shows more
power than other tests. In case of skewed distribution rank test
or score based test may be more preferable. The choice of a
suitable rank test or score based test which is more efficient
than t-test depends on the underlying distribution of data.
Because the practicing statistician usually has no clear idea
about the distribution, an adaptive test should be applied which
takes into account the given data set.
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