

*Corresponding author: Shreeram Hudda
School of Computer Science and Engineering Lovely Professional University, Phagwara, India

ISSN: 0976-3031

Research Article

SPIRAL MODEL FOR COMPONENT-BASED SOFTWARE DEVELOPMENT

Shreeram Hudda*

School of Computer Science and Engineering Lovely Professional University, Phagwara, India

DOI: http://dx.doi.org/10.24327/ijrsr.2017.0805.0232

ARTICLE INFO ABSTRACT

Industry is moving towards components based software development. Component is a ready-made
code or reusable code. The advantage of component based development process is development time
and cost both will be reduces. In the hardware development process, components are directly used in
the project without changes but in the software development, project to project the functionality will
be differ. So the components are customized rather than direct use. To develop large and complex
system from scratch, it requires more number of resources such as time, money, and manpower. So
Component Based Software Engineering (CBSE) takes place to develop such system. The role of
CBSE is to handle entire framework activities of system development with component, and
component development separately. The lifecycle activities for component-based development are
different from non-component based development. Therefore, there is a need of a specific life cycle
model to develop system with components or component based development. In this paper, we
introduce the spiral model as component based development model, with some adaptions. We
named it as “Spiral Model for Component Based Software Development.”Here, we are describing
framework activities for system development with components, component assessment process, and
component development separately.

INTRODUCTION

Several different SDLC models are exist in software
engineering. These models are considering some specific
technical and non-technical goals. Examples of such models
are different traditional models such as Waterfall model, V
model, RAD model, Incremental model, Iterative model, and
Spiral model. These models are delimited by some
development constraints. We can categorize these SDLC
models into two main group: i) Sequential model ii)
Evolutionary model. In sequential model, developers can
perform next activity only after the completion of current
activity; and in case of evolutionary model, developers can
perform several activities in parallel also. Component-Based
Software Development is a very new and young discipline, and
still required some quality research.

For an example, we are considering two banks here. These
banks are: State Bank of India (SBI), and Punjab National
Bank (PNB). An organization XYZ has developed a system for
SBI. Now PNB contracted to same XYZ organization for
developing a system with almost same functionalities. For
XYZ, using the component(s) from SBI system into PNB
system is more beneficial rather than developing from scratch.
Since both systems have almost same functionalities. In similar

manner when developers use a pre-existing component, with
some adaptions if necessary, then it becomes more beneficial
for them rather than develop it from baseline.

When an organization used components that are developed by a
third party or vender then they are off-the-shelf component. So
off the shelf components are not available in organization’s
library, and same product are not developed by the same
organization. When an organization used a component that are
extracted from own organization library then they are fully
experienced component. When the component is partially
developed means some functionality are developed by own
organization, and some functionality are developed by other
vender then it is partially experienced component. An
organization is not interested in off the shelf component then
development of a component is new component.

S. A. Fahmi et al. mentioned, “now software systems have
become more complex and larger than earlier. Using the
traditional lifecycle models for development of large and
complex system resulted problems such as failure to meet
budget, deadline, and quality requirements. The development
of such system from baseline is always not more beneficial
than development with reusable components”, in research study
[5].

Available Online at http://www.recentscientific.com
 International Journal of

Recent Scientific

 Research International Journal of Recent Scientific Research
Vol. 8, Issue, 5, pp. 16858-16865, May, 2017

Copyright © Shreeram Hudda, 2017, this is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is
properly cited.

DOI: 10.24327/IJRSR

CODEN: IJRSFP (USA)

Article History:

Received 06th February, 2017
Received in revised form 14th
March, 2017
Accepted 23rd April, 2017
Published online 28th May, 2017

Key Words:

COTS, Software Life Cycle Model,
Component-Based Development, Waterfall
Model, RAD Model, Component-Based
Software Engineering, Spiral Model,
Component Assessment.

Shreeram Hudda., Spiral Model For Component-Based Software Development

16859 | P a g e

In study [5], researchers highlighted that “when every time
large and complex software products are developed from
scratch, it would not be possible to overcome such problems
that are encounter during the development of products. So
overcome those problems the concept of re-usability was
occurred which created the idea of component-based software
engineering (CBSE).Now CBSE has become very popular and
effective way to develop the large and complex software
products.”

In research study [17], authors have published first paper about
component based software development. In [17], authors have
used the spiral model as component based software
development. They have also presented several reusability
challenges. They have described component assessment model,
and provided introduction about component development
process. However, they not described component development
process in detail. Now in this paper authors describe
component based software development process using spiral
model with some adaptions, and component development
process in detail. Here, authors divide component development
process into two parts. These two parts are: (i) enhancing
existing functionalities or add new functionalities into an
existing component, and (ii) developing new component from
scratch. The authors use waterfall model to enhance the
functionalities (as available under section 6), and RAD model
to develop new component (as available under section 6).

The remainder of this paper is organized as follows. Section 2
summarizes background and related work. Section 3
summarizes non-component based spiral model. Section 4
discusses spiral model for component-based software
development. Section 5 presents a process for component
assessment. Section 6 describes component development
process. Section 7 concludes this paper and states future work.

Related Background Work

A number of development processes for component-based
development (CBD) have been proposed, e.g. [1], [2], [3], [4],
and [5]. I. Crnkovic et al. proposed a research work [1], in
which they presented that “a component-based approach cannot
be fully utilized when the development processes, and even the
development organization are not adopted according to the
basic principles of CBSE.”The researchers described the
principle differences between component-based and non-
component-based processes.

I. Crnkovic et al. in study [2] described “different phases of
component-based system lifecycle. These phases are described
in a set of framework activities for a particular process model.
The process of component development and component-based
system development differs in many significant ways from the
classical development process of software systems. System
development process with components is different from
component development process. This separation has result on
several other activities such as programming issues are less
emphasized, while verification process requires more efforts.”
They also analyzed the basic characteristics of component-
based approach and the generic lifecycle of component-based
systems, and lifecycle of components. “Y: A New Component-
Based Software Lifecycle Model [3], presented by L. F.
Capretz that considered multifaceted activity that involves
domain engineering, frame working, assembling, archiving,

and design of software components.” S. A. Fahmi et al.
described a work [5], in which they discussed some of the
popular approaches and given a comparative discussion among
those approaches considering the challenges faced by
component-based development.

“The W model for Component-based Software Development”
[4], discussed by K. K. Lau et al. that addresses V & V
(verification and validation) process. The W model is extended
version of V model. Basically W model defines two V – one V
for the process of component development and one V for the
process of system development, and they combine the two
processes into a single CBD process. The V for component
development defines a process for identifying and defining
repository components from domain requirements as well as V
& V for such components. The V for system development
defines a process for assembling repository components into a
system according to system requirements as well as V& V for
such component composition.

M. Morisio et al. presented a work in which they described an
investigation of COTS-based software development for a
particular NASA environment [9]. They analyzed fifteen COTS
projects, these projects represent different software domains.
These projects use more than thirty COTS products. They
defined a new process and a set of activities for COTS-based
software development.

I. Crnkovic et al. presented a study in which they highlighted
several important issues related to the development and
maintenance of reusable components [15]. They showed a
successful example of the component-based system
development by the ABB Advant Open Control Systems
(OCS).

I. Crnkovic proposed a work in which he described several
challenges that are facing by CBSE [8]. Some challenges out of
them are: “trusted components, component certification,
composition predictability, tool support, requirements
management and component selection, development models,
component configurations, dependable systems and CBSE, and
long-term management of component-based systems.”
Researcher also described several disadvantages and risks that
are present in CBD those can affect success of CBD. Several
disadvantages are: “time and effort required for development of
components, unclear and ambiguous requirements, conflict
between usability and reusability, component maintenance
costs, and reliability and sensitivity to changes.”

Spiral Model

When the requirements are not clear to develop the product
functionality from base to advance level spiral model is used.
Here, we are summarizes Spiral Model framework activities
using a diagram. These activities authors have presented in
detail in study [17]. Non-component based Spiral model
contains following six activities in the framework. Figure 1
describe the framework activities of spiral model. These are
[17]:

1) Customer communication, 2) Planning, 3) Risk
analysis,
4) Engineering, 5) Construction and release, and 6) Customer
evaluation.

 International Journal of Recent Scientific Research

Spiral Model for Component-Based Software

The primary idea of the component-based development
approach is to reuse the pre-existing components instead of
developing new components from scratch. So the availability
of existing components must be considered in requirement
analysis and design phase of system development. This
consideration has several results for the component
system development lifecycle: i) the process of system
development with components is separated from process of
components development, ii) a new process for
assessment, and iii) several adaptions are required in the
lifecycle activities of the development processes.
component assessment process takes place before component
development. It means developer’s team search a candidate
component into own organization library rather than
developing a new component. When candidate component is
available then use it directly or with some adaptions, if
necessary, otherwise development starts. Usually, components
are built for reuse; in sometime not yet existing systems, and in
some time possibly planned systems.

The system development with components is based on the
identification of reusable component and relation between them
[13], [14]. More effort is required in finding, evaluating, and
testing the components; and less effort is required in
implementation of components [9]. Figure 2
model, with some adaptions, adopted to component
approach [17].

Customer Communication

In this phase, requirement engineers are communicating with
customers to collect the requirements. In component
approach requirement gathering is quite more different from
normal traditional approach. In component
one important activity is to analyze the availability of existing
components so that developers can fulfill more number of these
requirements by available components. This means that the
requirement engineers must aware about availability of existing
components. It need not be necessary that appropriate
components can always be found.

International Journal of Recent Scientific Research Vol. 8, Issue, 5, pp. 16858-16865, May, 2017

Based Software Development

based development
existing components instead of

developing new components from scratch. So the availability
of existing components must be considered in requirement

esign phase of system development. This
consideration has several results for the component-based
system development lifecycle: i) the process of system
development with components is separated from process of
components development, ii) a new process for component
assessment, and iii) several adaptions are required in the
lifecycle activities of the development processes. Hence,
component assessment process takes place before component
development. It means developer’s team search a candidate

o own organization library rather than
developing a new component. When candidate component is
available then use it directly or with some adaptions, if
necessary, otherwise development starts. Usually, components

xisting systems, and in

The system development with components is based on the
identification of reusable component and relation between them
[13], [14]. More effort is required in finding, evaluating, and

omponents; and less effort is required in
Figure 2 shows a spiral

model, with some adaptions, adopted to component-based

In this phase, requirement engineers are communicating with
customers to collect the requirements. In component-based
approach requirement gathering is quite more different from
normal traditional approach. In component-based approach,
one important activity is to analyze the availability of existing

that developers can fulfill more number of these
requirements by available components. This means that the
requirement engineers must aware about availability of existing
components. It need not be necessary that appropriate

So developers can do two things, they caneither start
implement of new components
such a way so that they can use existing components. The SRS
document contains three things. These are: i) Goal of the
system ii) Functional requirements iii) and Non
requirements. After preparing the software requirement
specification (SRS) document, the developer can understand
how many functionalities are developed in final product.

Planning

This phase is similar to the phase of non
spiral model. In this phase, various attributes of the software
product are estimated by using different empirical models. The
various software attributes are size, cost, effort, and schedule.
When the developers are using existing components then the
estimation of cost, size, effort, and schedule will minimal.

Figure 2 shows the attribute estimation sequence. After prepare
the SRS document the developer can
functionality are going to be developed. So based on this
knowledge the size of the software is estimated. After calculate
the size of the software by using different empirical model,
developer can estimate the effort required to devel
software. After estimate effort for the software, developer can
estimate the cost and schedule.

Risk Analysis

This activity is also similar to the activity of non
based spiral framework. Different risk factorsare involved in

Figure 1 Spiral Model [17]

Figure 2Attribute Estimation Sequence

16865, May, 2017

16860 | P a g e

So developers can do two things, they caneither start
implement of new components or modify the requirements in
such a way so that they can use existing components. The SRS
document contains three things. These are: i) Goal of the
system ii) Functional requirements iii) and Non-functional

After preparing the software requirement
specification (SRS) document, the developer can understand
how many functionalities are developed in final product.

imilar to the phase of non-component-based
spiral model. In this phase, various attributes of the software
product are estimated by using different empirical models. The
various software attributes are size, cost, effort, and schedule.

are using existing components then the
estimation of cost, size, effort, and schedule will minimal.

Figure 2 shows the attribute estimation sequence. After prepare
the SRS document the developer can understand how many
functionality are going to be developed. So based on this
knowledge the size of the software is estimated. After calculate
the size of the software by using different empirical model,
developer can estimate the effort required to develop the
software. After estimate effort for the software, developer can
estimate the cost and schedule.

This activity is also similar to the activity of non-component-
based spiral framework. Different risk factorsare involved in

Attribute Estimation Sequence

Shreeram Hudda

the software project. These risk factors are analyzed, and the
risk factor impact is estimated, and mitigate it.

Engineering, Construction And Release

Before designing the software design description (SDD)
document, components are introduced in the development
process since designer must be aware about the availability of
components. After preparing the SDD document, developers
are able to understand how many functionalities are required by
the system. First of all, verify the library for the probable
components. To verify the library for the probable components,
developer’s team is analyzing how many requirements can be
fulfilled by available components. These requirements can be a
part of system being developed, or of a system plan to be
developed. When a candidate component (i.e. a component that
fulfill the required functionalities) is available in the library
then select it, extract the candidate component
and use it. More than one candidate components may available
in organization library. Whenever more than one candidate
components are available then compare all the candidate
components, and ranked them. The ranking of components
should be maintained throughout the system development so
the alternatives for a function can quickly be found. Thes
candidate components may be: i) Commercial off the shelf
(COTS), ii) fully, and iii) partially components.

Hence, when the required component is available in library
then use it directly into the system, or do
necessary, whenever required. When the component of
required functionality is not available in organization library
then develop the functionality from baseline, and make the
component available for reuse in future. Before releasing the
product into customer’s location, keep the new components in
the library.

 Figure 3 Spiral Model for Component

Shreeram Hudda., Spiral Model For Component-Based Software Development

project. These risk factors are analyzed, and the

risk factor impact is estimated, and mitigate it.

Before designing the software design description (SDD)
document, components are introduced in the development
process since designer must be aware about the availability of
components. After preparing the SDD document, developers
are able to understand how many functionalities are required by

verify the library for the probable
. To verify the library for the probable components,

developer’s team is analyzing how many requirements can be
fulfilled by available components. These requirements can be a
part of system being developed, or of a system plan to be

date component (i.e. a component that
fulfill the required functionalities) is available in the library

extract the candidate component from library,
and use it. More than one candidate components may available

ever more than one candidate
components are available then compare all the candidate
components, and ranked them. The ranking of components
should be maintained throughout the system development so
the alternatives for a function can quickly be found. These
candidate components may be: i) Commercial off the shelf

ii) fully, and iii) partially components.

available in library
 some adaption, if

necessary, whenever required. When the component of
required functionality is not available in organization library
then develop the functionality from baseline, and make the

e in future. Before releasing the
product into customer’s location, keep the new components in

Therefore, it may become existing components for future
systems. Hence, component assessment process takes place
before component development. The component assessment
and component development process described in two separate
sections below.

When building a component-based system, a system may build
by directly connecting components, if they available. This
connection is done by “glue code”. The environment, and
usage of components are not clear so the testing of components
should be performed very carefully. Several different
techniques of testing, different test suites should be applied on
the component for verificatio
component should be delivered to system developer. The
components could have been developed in another system with
some other purpose. Since system developers not having any
control over the components functions. Hence, the u
of components is not sufficient since the behavior of the
component can be different in other environments. The
components should be created in such a manner so that they
can easily integrated with other components of system.
Integration with other components also possible to provide
several specific functionalities. So integration of component
with other components must be tested separately since an
assembly of correct components may be incorrect. The testing
is performed at many different time
integration testing with subsystem, and system testing.

Whenever in the developed system if any portion is changed in
one component that will be causes different errors in the entire
system. So to cover those errors there is a need
system, this is regression testing. When the software is
developed based on customer priority list then some of
components are added, and some pf components are deleted.

Spiral Model for Component-Based Software Development [17]

velopment

16861 | P a g e

Therefore, it may become existing components for future
systems. Hence, component assessment process takes place

component development. The component assessment
and component development process described in two separate

based system, a system may build
by directly connecting components, if they available. This

s done by “glue code”. The environment, and
are not clear so the testing of components

should be performed very carefully. Several different
techniques of testing, different test suites should be applied on
the component for verification. Test document together with
component should be delivered to system developer. The
components could have been developed in another system with
some other purpose. Since system developers not having any
control over the components functions. Hence, the unit testing
of components is not sufficient since the behavior of the
component can be different in other environments. The
components should be created in such a manner so that they
can easily integrated with other components of system.

ther components also possible to provide
several specific functionalities. So integration of component
with other components must be tested separately since an
assembly of correct components may be incorrect. The testing
is performed at many different times through unit testing,
integration testing with subsystem, and system testing.

Whenever in the developed system if any portion is changed in
one component that will be causes different errors in the entire
system. So to cover those errors there is a need of retest the
system, this is regression testing. When the software is
developed based on customer priority list then some of
components are added, and some pf components are deleted.

 International Journal of Recent Scientific Research Vol. 8, Issue, 5, pp. 16858-16865, May, 2017

16862 | P a g e

During this process functionality will be changed. So to cover
the functional errors different black box test plan are
implemented, this is smoke testing. Therefore, regression
testing, and smoke testing also takes place in system
development with component. After the testing, first release of
product is deployed into the customer location

Customer Evaluation

This phase is same as non-component-based spiral model. In
this framework continues feedback is accepted from the
customers to improve the product functionality.

Figure 3 shows Spiral Model for Component-Based
Development. In this model, release by release the product
functionality are increases according to customer requirements.
Therefore, customer’s satisfaction level is high. In each level
development process, developer skill level are elaborated.
Therefore, this model is also named as “Win-Win Spiral Model
for Component-Based Software Development.”

Component Assessment

The component-based system development decreases the effort
required in design, and implementation of system development,
it needs additional effort in several other activities. It requires
more efforts in searching of existing components that satisfies
more number of system’s functionalities, instead of
implementing the required functionalities by new components.
The developers must verify two things in the selected
components: i) selected components must provide required
functionalities, and ii) they can be successfully integrated with
other components of system also. Selected components can’t be
the “best component”, but it can be fit together effectively. In
non-component-based approach process starts by requirement
gathering and requirement analysis (i.e. customer
communication), and end with customer’s feedback but in
component-based approach selection of appropriate
components, and integration of them into the system will also
be considered. Hence, here two problems appear: (i) It need not
be necessary that the components of required functionality are
always available in organization’s library and (ii) It may
possible that selected component fits partially in our system’s
design. So there is a requirement of a process for finding
components and a need of component testing before it can be
integrated into the system. A component assessment process
for may include the following activities [17]:

Lookup into Organization Library

Developers must look up into organization’s library to identify
availability of required components. There may available more
than one components in organization library. So developers
should keep more concentration in searching of a component.
To search the component into library, the developers match the
required functionalities with the component’s functionalities.

Identify the Candidate Component

Identify the component from organization library that can
fulfill the required functionalities. These functionalities can be
part of the system being developed, or of systems plan to be
developed. There can be more than one candidate component.
So developers should identify the candidate component, ranked
them, and use best candidate component.

Extract the Component If Available

There may available more than one candidate component in
organization library. When more than one candidate
components are available in the organization’s library then
compared them, ranked them, and select the “best component”.
A component is a “best component” if it provides best function,
or more number of functionalities compared to other
components. The ranking of components should maintain
throughout the system development such that developers can
select alternatives for a function quickly. When a component of
required functionality is available then select it, and use it in
system development. The developers must verify two things in
the selected components: i) selected components must provide
required functionalities, and ii) they can be successfully
integrated with other components of system also. Selected
components can’t be the “best component”, but it can be fit
together effectively. These components defined by three
different categories. These are: (i) Commercial-off the self, (ii)
fully, and (iii) partially.

Build the Component If Not Available

Whenever the required components are available in library then
use them directly into the system, or do some adaption, if
necessary, whenever required. When the component of
required functionality is not available in library then develop it
from baseline, and put it into the own organization library for
reuse in future, this component is called as new component.
The New component should be developed in such a way so that
developers may reuse it in future systems. Before releasing the
product into customer’s location, keep the new components in
the library. They may become existing components for future
systems.

Verify

When building a component-based system, a system may build
by directly connecting components, if they available. This
connection is done by “glue code”. The environment, and
usage of components are not clear so the testing of components
should be performed very carefully. Several different
techniques of testing, different test suites should be applied on
the component for verification. Test document together with
component should be delivered to system developer.
Components could have been developed in another system with
some other purpose since system developers not having any
control over the components functions. Hence, the unit testing
of components is not sufficient since their behavior can be
different in other environments. Components should be created
in such a manner so that they can easily integrated with other
components of system. Integration with other components also
possible to provide several specific functionalities. So
integration of component with other components must be tested
separately since an assembly of correct components may be
incorrect. The testing is performed at many different times
through unit testing, integration testing with subsystem, and
system testing. Hence, verification process divided into two
levels. At first level developers testing functional and extra-
functional properties of the component separately. The second
level includes the testing of the component with other
components.

Shreeram Hudda

Put the Component in Library

Developers make sure that they have placed new
in the library. These components may become existing
components for future systems. The library contains not only
components but also some additional information (i.e.
metadata) related to components such as tests results, passed
tests, failed tests, and test procedures that can be useful in
future.

Figure 4 describe the component assessment process. All these
activities of component assessment process are need not be
necessary to performed in the order as explained above. Some
activities are more important, and some are less important. For
example, if an organization uses only internally build
components then identify the candidate component activity will
not important.

Component Development Process

The component development process is similar to system
development process. For development of a new component,
developers can use any arbitrary model either software
development lifecycle model or reuse other components as for
system development. Components are developed for reuse in
many different systems, many of them yet to be designed or yet
to be planned. So reusability of component implies
adaptability. Since developers can add some new functionality
to components, edit existing functionality, and remove any
unnecessary functionality from the components according to
system requirements. To develop reusable components
developers faces several challenges. These are: (i) More
difficulty in managing requirements and (ii) More efforts
needed to develop reusable components.

We divide the development process for a component into two
parts. These parts are: (i) Add new functionalities or features to
an existing component; or enhance the existing functionalities
of a component (ii) Develop new component from the scratch.

Enhance the Existing Functionalities of a Component

First we discuss about the first part – enhance the existing
functionalities of a component. We are suggesting to the
developers that they can use waterfall model to
existing functionalities of a component, if component does not
provide more functionalities to developers. Since waterfall
model is best suited when more requirements are available. In
the case of enhancing the existing functionalities or add
new functionalities to an existing component, more
requirements are available. Since some requirements are
already available in the component, and some are to be add.
Therefore, waterfall model is best suited in this case. The
activities of waterfall model are: 1) Analysis, 2) Design, 3)

Figure 4 Component Assessment Process

Shreeram Hudda., Spiral Model For Component-Based Software Development

Developers make sure that they have placed new components
in the library. These components may become existing
components for future systems. The library contains not only
components but also some additional information (i.e.
metadata) related to components such as tests results, passed

ests, and test procedures that can be useful in

Figure 4 describe the component assessment process. All these
activities of component assessment process are need not be

in the order as explained above. Some
activities are more important, and some are less important. For
example, if an organization uses only internally build
components then identify the candidate component activity will

The component development process is similar to system
development process. For development of a new component,
developers can use any arbitrary model either software
development lifecycle model or reuse other components as for

development. Components are developed for reuse in
many different systems, many of them yet to be designed or yet
to be planned. So reusability of component implies
adaptability. Since developers can add some new functionality

functionality, and remove any
unnecessary functionality from the components according to
system requirements. To develop reusable components
developers faces several challenges. These are: (i) More

and (ii) More efforts are

We divide the development process for a component into two
parts. These parts are: (i) Add new functionalities or features to
an existing component; or enhance the existing functionalities

elop new component from the scratch.

Component

enhance the existing
We are suggesting to the

developers that they can use waterfall model to enhance the
existing functionalities of a component, if component does not
provide more functionalities to developers. Since waterfall
model is best suited when more requirements are available. In
the case of enhancing the existing functionalities or add some
new functionalities to an existing component, more
requirements are available. Since some requirements are
already available in the component, and some are to be add.
Therefore, waterfall model is best suited in this case. The

model are: 1) Analysis, 2) Design, 3)

Coding, 4) Testing, and 5) Support. Here, we discussing these
activities in detail.

Analysis

In this activity, software requirements are gathered based on
the problem statement. The problem statement translated into
the symbolic representation.
different data objects are gathered by using the different
elicitation techniques. All the data objects are documented into
data dictionary. The data objects are divided into functional and
non-functional requirements. The output of analysis stage is
documented called as Software Requirement Specification
(SRS). SRS document contains:
Functional requirements, and (iii) Non

Design

In this stage by using different design principles the
generalized problem statements are translated into procedural
descriptions (i.e. algorithms). The symbolic representation can
in the form of ER-diagrams, Data Flow diagrams, and State
Transition diagram. After symbolic representation, different
technical specifications are finalized to implement system.
Based on the specifications, component functionalities are
described in the algorithm. The output of this stage is
documented is called as Software Design Descrip
Document (SDD). SDD contains algorithms, flowcharts,
pseudocodes, and data structures. So an overall system and
software architecture is established.

Coding

In this stage, the procedural description (i.e. algorithm) is
translated into machine-readable format by using the
appropriate programming languages.

Testing

Different test classes are implemented on the developed
program to cover the structural and functional errors. The
objective of testing is to prove the system at what extent
becomes failure. Unit testing, integration testing, and system
testing should be performed. After testing the system will be
deployed into the customer location.

Support

When the system is in customer sight then different kinds of
support is required to maintain the system from uncovered
errors, platform changes, functional requirement changes, and
frequent changes.

Develop New Component from the Scratch

Now we discuss about the second part
from the scratch. In research study [17], authors have discussed

Component Assessment Process

Figure 5 Waterfall Modeltoenhance the Existing Functionalities of a
Component

velopment

16863 | P a g e

Coding, 4) Testing, and 5) Support. Here, we discussing these

In this activity, software requirements are gathered based on
the problem statement. The problem statement translated into

 Based on the goal of the system
different data objects are gathered by using the different
elicitation techniques. All the data objects are documented into
data dictionary. The data objects are divided into functional and

unctional requirements. The output of analysis stage is
documented called as Software Requirement Specification
(SRS). SRS document contains: - (i) Goal of the system, (ii)
Functional requirements, and (iii) Non-functional requirements.

age by using different design principles the
generalized problem statements are translated into procedural
descriptions (i.e. algorithms). The symbolic representation can

diagrams, Data Flow diagrams, and State
ymbolic representation, different

technical specifications are finalized to implement system.
Based on the specifications, component functionalities are
described in the algorithm. The output of this stage is
documented is called as Software Design Description
Document (SDD). SDD contains algorithms, flowcharts,
pseudocodes, and data structures. So an overall system and
software architecture is established.

In this stage, the procedural description (i.e. algorithm) is
readable format by using the

appropriate programming languages.

Different test classes are implemented on the developed
program to cover the structural and functional errors. The
objective of testing is to prove the system at what extent it
becomes failure. Unit testing, integration testing, and system
testing should be performed. After testing the system will be
deployed into the customer location.

When the system is in customer sight then different kinds of
to maintain the system from uncovered

errors, platform changes, functional requirement changes, and

Develop New Component from the Scratch

Now we discuss about the second part-develop new component
from the scratch. In research study [17], authors have discussed

Waterfall Modeltoenhance the Existing Functionalities of a
Component

 International Journal of Recent Scientific Research

issues related to incorporating reusability in software. In [17],
authors stated that “The process of developing reusable
components separately from their target system reduces the
interconnection among parts of the system –
low coupling. This low coupling makes the resulting
application easier to understand, modify, and test. Since
developers require low coupling, and high cohesion.” The
developers can achieve these objectives by using modularity
design i.e. RAD model. When many components are developed
from scratch then developed them independently or separately,
and later integrate them into the system. To integra
the system unit testing, integration testing, and system testing
takes place. The connection of components with system done
by “glue code”. The RAD model is best suitable when
developers have tight time schedule. The RAD model uses
modularity design to develop time critical applications. In
modularity design, developers decompose the application into
modules, and later integrate it into the system. In RAD model
two factors are considered. These are: 1) Cohesion, and 2)
Coupling. Cohesion is a quantitative measure of what extent
the module i.e. component is independent from other modules.
The cohesion represents functional strength of the module.
Coupling is a quantitative measure of what extent the module is
dependent on other module. The effective modularity design
maintains the high cohesion and low coupling. The framework
of RAD model consists these activities: 1) Business Modelling,
2) Data Modelling, 3) Process Modelling, 4) Application
Generation, and 5) Test and Turnover.

Business Modelling

In business modelling activity the existing application under
goes analysis to finalize the business objectives. The analysis
phase and design phase both together known as system
engineering. Software is a subset of the system. So to finalize
the objectives there is a need of analyzing the existing system.
The output of system engineering is business objective or
business function.

Data Modelling

Based on the business objective various data objects are
finalized in the data modelling state.

Process Modelling

In process modelling state information flow is created either by
adding, deleting or modifying the objects.

Application Generation

In application generation the information flow is translated into
machine-readable format. This phase is similar to coding phase
in waterfall model.

Figure 6 RAD Model to develop the New Component from the Scratch

International Journal of Recent Scientific Research Vol. 8, Issue, 5, pp. 16858-16865, May, 2017

issues related to incorporating reusability in software. In [17],
“The process of developing reusable

separately from their target system reduces the
– a quality called as

low coupling. This low coupling makes the resulting
application easier to understand, modify, and test. Since

and high cohesion.” The
developers can achieve these objectives by using modularity
design i.e. RAD model. When many components are developed
from scratch then developed them independently or separately,
and later integrate them into the system. To integrate them into
the system unit testing, integration testing, and system testing

nents with system done
code”. The RAD model is best suitable when

developers have tight time schedule. The RAD model uses
design to develop time critical applications. In

modularity design, developers decompose the application into
modules, and later integrate it into the system. In RAD model
two factors are considered. These are: 1) Cohesion, and 2)

uantitative measure of what extent
the module i.e. component is independent from other modules.
The cohesion represents functional strength of the module.
Coupling is a quantitative measure of what extent the module is

ive modularity design
maintains the high cohesion and low coupling. The framework
of RAD model consists these activities: 1) Business Modelling,
2) Data Modelling, 3) Process Modelling, 4) Application

In business modelling activity the existing application under
goes analysis to finalize the business objectives. The analysis
phase and design phase both together known as system
engineering. Software is a subset of the system. So to finalize

tives there is a need of analyzing the existing system.
The output of system engineering is business objective or

Based on the business objective various data objects are

In process modelling state information flow is created either by

information flow is translated into
readable format. This phase is similar to coding phase

Testing

In testing stage various test plans are implemented on the
module. At the end of testing error free module is
called as component.

CONCLUSION

In this paper, we have presented the development process of
system with components, component assessment process, and
component development process. Here, we presented a
component based development model named as
for Component-Based Software Development”. We made some
adaptions in spiral model, and presented it as component based
software development model. The component assessment
process takes place before component development since
identify the availability of candidate component before a new
component development starts. The component development
process is divided into two parts. In one part we use waterfall
model, and in second part we use RAD model for component
development. Developers can int
system directly or they can change some functionality. The
development of a component from scratch requires more
cohesion, and less coupling. Hence, RAD model is useful for
component development from scratch.

References

1. I. Crnkovic, S. Larsson, and M. Chaudron. “Component
based development process
lifecycle.”27th IEEE Int. Conf. on Information
Technology Interfaces (ITI), pp. 591

2. I. Crnkovic, S. Larsson, and M. Chaudron. “Component
based development process and component lifecycle.” In
Proc. of the Int. Conf. on Software Engineering
Advances (ICSEA06), pp. 40

3. L. F. Capretz. “Y: A New Component Based Lifecycle
Model.” Journal of Computer Science, pp. 76

4. K. K. Lau, F. M. Tawee
model for Component
Development.”37thEUROMICRO Conf. on Software
Engineering and Advanced Applications (SEAA), pp.
47-50, September 2011.

5. S. A. Fahmi, and H. J. Choi. “Life Cycles for
Components-Based Software Devel
Conf. on Computer and Information Technology
Workshops (CIT Workshops), pp. 637

6. B. W. Boehm. “A Spiral Model of Software
Development and Enhancement,” IEEE Computer
Society vol. 21, pp. 61-

7. A. W. Brown. “Large S
Development.” Prentice Hall PTR Upper Saddle River,
USA, ISBN- 013088720X,

8. I. Crnkovic. “Component
New Challenges in Software Development.”In Proc. of
the 25thInt. Conf. on Information
(ITI), pp. 9-18, June 2003.

9. M. Morisio, C. B. Seaman, A. T. Parra, V. R. Basili, S.
E. Kraft, and S. E. Kondon. “Investigating and
Improving a COTS-
Process.” In Proc. of the 2000 Int. Conf. on Software
Engineering, pp. 32-41, 2000.

10. T. C. Lethbridge, and R. Laganiere. “Basing Software
Development on Reusable Technology.” Object

RAD Model to develop the New Component from the Scratch

16865, May, 2017

16864 | P a g e

In testing stage various test plans are implemented on the
module. At the end of testing error free module is available

In this paper, we have presented the development process of
system with components, component assessment process, and
component development process. Here, we presented a
component based development model named as “Spiral Model

Based Software Development”. We made some
adaptions in spiral model, and presented it as component based
software development model. The component assessment
process takes place before component development since

vailability of candidate component before a new
component development starts. The component development
process is divided into two parts. In one part we use waterfall
model, and in second part we use RAD model for component

Developers can integrate component into the
system directly or they can change some functionality. The
development of a component from scratch requires more
cohesion, and less coupling. Hence, RAD model is useful for
component development from scratch.

vic, S. Larsson, and M. Chaudron. “Component
based development process and component

IEEE Int. Conf. on Information
Technology Interfaces (ITI), pp. 591-596, June 2005.
I. Crnkovic, S. Larsson, and M. Chaudron. “Component

process and component lifecycle.” In
Proc. of the Int. Conf. on Software Engineering
Advances (ICSEA06), pp. 40-44, October 2006
L. F. Capretz. “Y: A New Component Based Lifecycle
Model.” Journal of Computer Science, pp. 76-82, 2005.
K. K. Lau, F. M. Taweel, and C. M. Tran. “The W
model for Component-based Software

EUROMICRO Conf. on Software
Engineering and Advanced Applications (SEAA), pp.

50, September 2011.
S. A. Fahmi, and H. J. Choi. “Life Cycles for

Based Software Development.”8thInt.
Conf. on Computer and Information Technology
Workshops (CIT Workshops), pp. 637-642, July 2008.
B. W. Boehm. “A Spiral Model of Software
Development and Enhancement,” IEEE Computer

-72, May 1988.
A. W. Brown. “Large Scale, Component-Based
Development.” Prentice Hall PTR Upper Saddle River,

013088720X, December 2000
I. Crnkovic. “Component-based Software Engineering-
New Challenges in Software Development.”In Proc. of

Int. Conf. on Information Technology Interfaces
18, June 2003.

M. Morisio, C. B. Seaman, A. T. Parra, V. R. Basili, S.
E. Kraft, and S. E. Kondon. “Investigating and

-Based Software Development
Process.” In Proc. of the 2000 Int. Conf. on Software

41, 2000.
T. C. Lethbridge, and R. Laganiere. “Basing Software
Development on Reusable Technology.” Object-

Shreeram Hudda., Spiral Model For Component-Based Software Development

16865 | P a g e

Oriented Software Engineering-Practical Software
Development Using UML and Java, 11th reprint 2011,
Tata McGraw-Hill Education, pp. 61-100, 2004.

11. B. Hughes, M. Cotterell, and R. Mall. Software Project
Management, 5th edition, 6th reprint, Tata McGraw-Hill
Education, New Delhi India, pp. 68-96, 2013.

12. R. S. Pressman. Software Engineering: a Practitioner’s
Approach, 6th Edition, New Delhi, India, McGraw Hill
Education (India), 2010, pp. 103-126.

13. L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice, Addison-Wesley, 1998.

14. D. Garlan, R. Allen, and J. Ockerbloom. “Architectural
Mismatch: Why Reuse is so hard.” IEEE Software, pp.
17-26, vol. 12, issue 6, November 1995.

15. I. Crnkovic, and M. Larsson. “A Case Study: Demands
on Component-based Development.” 22nd Int. Conf. on
Software Engineering, pp. 23-31, ACM Press, 2000.

16. L. Sommerville. “Software Engineering.” 7th Edition,
Addison Wesley, June 2004.

17. S. R. Hudda, R. Mahajan. “Spiral Model for
Component-Based Software Development.” 3rd Int.
Conf. on Comp. Sci. (ICCS), pp. 817-836, November
2016.

How to cite this article:

Shreeram Hudda.2017, Spiral Model for Component-Based Software Development. Int J Recent Sci Res. 8(5), pp. 16858-16865.
DOI: http://dx.doi.org/10.24327/ijrsr.2017.0805.0232

