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ARTICLE INFO ABSTRACT

In this article, we propose to establish the proof of the differentiability of the solution of a system of
nonlinear equations disrupted following a certain number of parameters. Two main results have
been derived. In the first theorem, differentiability is defined according to FFrechet.The proof is
given using the theorem of reciprocal functions in Banach spaces with prior evidence of Frechet’s
strict differentiability of adirect application. In the second theorem, differentiability is in a weaker
form as to Frechet. Its proof requires the use of the Hadamard theorem of small disturbances of
isomorphism in Banach spaces and the theorem of strict differentiability of inverse functions
established in[10] (with a possible lack of differentiability in the sense of Fréchet).

INTRODUCTION
Cancer [2]-[7] is a serious genetic disorder in the number of dead cells as to cells division, leading to cells disequilibrium. The
balance between these two processes regulates the number of cells in the tissues, and the breakdown of this equilibrium leads to the
development of clusters of cancer cells (called tumors [6]) irrespective of the normal functioning of the body. The cancer cell is a
want on cell that multiplies itself in an uncontrolled and excessive manner within a normal tissue of the body. This anarchic
proliferation gives rise to increasingly large tumors that grow up and then destroy the surrounding organs.

The cancer cells can also swarm away from a body to form a new tumor, or circulate in a free form. By destroying its environment,
the cancer can become a real danger to the survival of an individual.

The fight against this disease is an important field of medical research. The need to adapt various types and forms of cancers as well
as the understanding of complex phenomena involved in its growth has led to the development of many mathematical models [3] in
recent decades. Mathematical modeling of cancer evolution is a rapidly developing field [13]. Their interest lies in their ability to
gather large quantity of information accumulated by biologists. Indeed, it is important to understand that the mathematical
complexity of a model is not a sufficient criterion to judge its relevance. Thus, the nature of this phenomenon (the cancer cells have
a fluid-like movement) motivated us to use the non-stationary compressible Navier-Stokes model, though relatively simple which
however describes the disease. These equations do not address the tumor environment and its interactions directly, but present

measurable magnitudes such as the volume density denoted by  ,v v x t  the density of the outer forces denoted by

 ,e e x t  , which models environmental factors. Furthermore, it is considered that the cells are transported by a velocity field,

say  ,v v x t , withthe related pressure  , .x t 
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The choice of the Navier Stokes system as working equations permits to tackle problems like unknown coupling, nonlinearity, and
time dependence. The non-linear nature of the convection term v v that appears in these equations is the source of difficulties in
solving this problem. To overcome these challenges, some authors use the method consisting in estimates and weak convergences in

regular spaces like   2 1, ;iL t t L I  f However, let notice that in this article the goal is to get the differentiability of the

compressible  system solution  ,v  Navier– Stokes with v  VR ,and  0 0, , eV v   , wherein 0v , 0 , and e are

respectively the initial velocity, initial density and density function that models the membrane surrounding the tumor and  the

operator satisfying     1
V V V V 




   


where  is a continuous invertible operator.

So our approach is therefore to disrupt our system involving measurable functions and operators and twice continuously

differentiable in Banach spaces in order to obtain proof of the differentiability of the solution ,v  .

Problem Formulation

In all fields of biology, the use of mathematics as presentation and forecasting tool has become more and more important nowadays.
In this article, we present the tumor problem through a given area. Consider a non-homogeneous region (variable density)

depending on the time  0 ,tI I t t  f occupied by the tumor, where I is a bounded Lipchitz of either 3R and either I regular

boundary I . We notice xthe position occupied by the tumor in 3RI  . At the initial instant 0it t the tumor occupies the position

0x in the space I .The compressible non stationary model is then described by the following cNS equations:

 t ev div v v v          2.1

  0t div v     2.2

With    0, ,x t I t t  f . Here e denotes the density of the external forces and the operator is defined as

   .
3

v div v div v  
 
 

     where 0  and 0  respectively represent the bulk viscosity and the dynamic

coefficients supposed to be constant. In this system, the pressure is given by the state law aCk  , 1k  and
aC adiabatic

constant as 2aC d .In the following, we set 2aC  .

The system is completed by initial conditions on the volume density and field velocity:

 
0 0 0t x    

0 0 0tv v x  and  
0 0 0tv q x    2.3

It is assumed that on the boundary I the speed satisfies:

 , 0Iv v x t      0, ,x t I t t   f  2.4

It is worth mentioning that
3Rv v   in  cNS is a tensor product of v andv. Then,

     . . .v v v v v v        2.5

Notations and approximation of the solution

Notations

Before enouncing the results it is necessary to define the areas in which we work.Let dI R be a regular bounded Lipchitz border

I and let 0,t t t  f a sufficiently wide interval. For all1  <p   , let  , dm pW I represents the usual Sobolev space
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defined on I and with the norm
,

 .
m p

( 1m  denotes an integer).In addition,  dpL I is the Lebesgue space on I with the norm

p
while

2K
is the norm associated with a given space 2K . If 1K is a Banach space, we note by  0 1, ;pL t t Kf the Banach space

consisting of measurable functions on
0 ,t t  f values in 1K .Let     32 1

0 0, ;X L t t H I   f ,     32 2
0 , ;Y L t t L I f ,

    2 2
0 , ;Z L t t L I f , and     2 1

0 , ;W L t t H I   f .

Approximation of the solution

We will later provide an estimate of the solution v of the  cNS problem without the disturbance operator.

Multiplying equation  2.1 byvand integrating over the volume I , we obtain the following variation formula:

0 , ,x I t t t     f

     
3 e

I I I I I I

v
vdx v v vdx v vdx div v vdx vdx dx

t


     
                       

By applying the differentiation theorem, the first member of the left gives the following estimate:

 1
0

21

2 H I
I I

v d
vdx v dx

t dt
 
      0 ,t t t    f  3.1

The Navier-Stokes equations in slow regime report that the integral over the volume Iof the term  v v is null due to the

assumption of low speed.

  0
I

v v vdx   , 0 ,t t t    f  3.2

In order to solve the  cNS problem, several estimates are required.

Estimate of  
I

v vdx .

     0 . . t

I I I

v vdx v v n ds tr v v dx   


       


(where 0 is a unique continuous linear application definedfrom  1
2W I to  2L I such that 0 0v  , n


is the normal to the edge of

I ,denoted by I and ds its elementary surface increment).It therefore follows that:

 
23

,

i j

i j i jI I I

v v Dv
v vdx dx dx

x x Dt
  

 
   

     3.3

Estimate of  
3I

div v vdx


   
  :

   
2

2

3I I I I

Dv
div v vdx vdiv v dx v dx dx

Dt


  

                  
     3.4

Where
3


    
 

.

estimate of
I

vdx
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2

I I

vdx k vdx     after integrating by parts we have:

2 2
2

0 .
2 2I I I I

k d
k vdx k v ndx dx k dx

t dt

 
 



 
       
   

  3.5

Finally the force provided by the membrane is: 0 ,t t t    f

    34 2e eL I L I
I

vdx v    3.6

Gathering these different estimates, the expression (2.1) becomes:

        33 4 21
0

221

2 2 eL I L IH I
I I I

d d Dv
v dx k dx dx v

dt dt Dt


         

      33 4 21
0

2
21 4

( )
2 3 eL I L IH I

I I

d Dv
v k dx dx v

dt Dt
          

  

      333 4 21
0

2 21 8
( )

2 3 eL I L IH I
I

d d
v k v dx v

dt dt
          

   3.7

Thus, the solution  ,v  of the problem satisfies the inequality  3.7 .

It is of the greatest interest to an estimate of the solution ,v  under the assumption of low speeds. Hence the following theorem:

Theorem 3.1 (estimated solution with low speed hypothesis).

Let  31
0 0v H I ,  2

0 L I  ,  34
0q L I and     32 2

0 , ;e L t t L I  f . We suppose there exists a constant 0  such that

   0, ,x t I t t   f ,
1

 


  and   . Then there exists a solution  ,v  of the system  cNS satisfying the initial

conditions  2.3 and the following inequality:

  34

1
22 2

0
t

e YX L I
v q e     

(3.8)

Proof

Let  and  denote the viscosity coefficients assumed to be constant and satisfying physical constraints
3


    
 

and 0. 

From [11] we have the following inequality:

       3 33 4 21
0

2 21 8
( )

2 3 eL I L IH I
I

d d
v k v dx v

dt dt
          

 

       3 33 4 21
0

1
( )

2 eL I L IH I
I

d
v dx q

dt
 

By applying the Young inequality, the estimation becomes:
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       3 33 4 21
0

2 21 1 1
( )

2 2 2 eL I L IH I
I

d
v dx q

dt
  

Integrating between 0t and tf yields:

          3 3 24 4 2

0 0

2 2 2 2 2

0

t t

eX L I L I L I
t t

v q dt q dt    
f f

      3 34 4

0

2 2 2 2 2

0

t

eX L I L I Y
t

v q dt q   
f

Applying the Gronwall Lemma (see  4 )for any 0t 

   34

0

2 2 2 2

0

t

eX L I Y
t

v q dt   
f

   34

2 2 2 2

0
t

eX L I Y
v q e  

Under the restricted increase imposed on 1 in the statement of the theorem, we can establish that

  34

1
22 2

0
t

e YX L I
v q e     

□

Linearization system

The characteristics are defined as above, with the same initial conditions and a domain I which is still bounded. We are still
interested in studying the system under the assumption of compressibility of cancer cells.

However, let's look at the character v v that appears in the (2.1).It is at the origin of difficulties when solving this problem. We
will linearize this term by substituting the following disturbance:

       , , , , ,                                    4.1x t x t  F H H ñ X

where H is alinear integrableoperator that will bedefined later in the proposition 4.1 and a function given by:

3 9 9
0 0, ,I t t t t            f f :    , , , , , ,x t x tñ X ñ X

Then, for all    0, ,x t I t t  f , equation(2.1)becomes :

     ,                       4.2t ev div v v v         F H

This approach has introduced new variables, say ,ñ X which are considered as a fieldargument  ,v x t and its divergence

(describes as anincrease in the volume) respectively.

Proposition4.1: For our study, let consider the  functions  , , ,x t ñ X and  , , ,x tU ñ X defined on 3 9
0 ,I t t      f and

satisfying the following assumptions:

Assumptions (H)

H-1: For all   3 9,   ñ X , there exists , ' 0   such that the functions

   , , , , , ,x t x tñ X ñ X and    , , , ,x t x t U ñ X are measurable functions  and satisfy the following conditions:
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   2 2, , , tx t e   ñ X ñ  4.3

   ' 2 2, , , tx t e  U ñ X ñ  4.4

H-2:For almost all   0, ,x t I t t    f , there exists  , 0   such that the functions

   , , , , , ,x t x tñ X ñ X and    , , , ,x t x t U ñ X are twice continuous and differentiable on 3 9 in addition:

4 te     ñ X and 4 te
    ñ U U  4.5

H-3:let uH = P be a continuous linear integral operator, for which any functionu correspond to H such that:

     
0

., : , , ,
t

I t

u t x t y u y t dt dy  pPH P x
f

is defined by:

   2 2
0 0: , ,L I t t L I t t       f fH :  4.6

H-4:let A and '
T be two non-linear differentiable operators in     2 1

0 2,L t t W If
We have the following formulas:

 
3 2 2

2 2 2
1

1

' ,
h g i

g
d v g h g

x t
 

 

         X ñA and  4.7

 
3 2 2

' 2 2 2

1

,
h g

i

g
d v g h g

x t 


         X ñT U Ug  4.8

Study of strict ԑ-differentiability

In this section, let pI be the disruption of domain I and define a displacement field of  defined from 3 3 

  , , ,p tI x t I v Id     

Definition5.1

Let 1E and 2E , two normed spaces I an open set in 1E . Let M all compact systems 1E .

If        ' ' '' 2 2v g h v h v h h    JJ J J or     '' 2
1 1 2, ,v h E E EL LJ with  '' 2v hJ is a bilinear operator. The

function 2I EJ: is called strictly ԑ-differentiable on I if the condition  D is satisfied

   2
2

0, , , 0
:

, ,

h M v I
D h d

v v d v th I





 


 

                     
J

f

Proposition 5.2. Let pI a disturbed areaof Idefined as follows:

  , , ,p tI x t I v v     

The operatoris a ԑ-continuousand ԑ- differentiable on X .

Proof

Suppose that A is Frechet-differentiable and vit a first variation, that is
     

0
lim ,

v g v
v g 








 


A A
A
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It is therefore clear that for all g X , the quantity  ,v g A is defined for small enough. After we suppose that

   ',v g v g  A A

Let show that A is twice- differentiable function according to Gateau X .

Assume that A is Fréchet differentiable We have for all  small enoughand for all g X

       v g v d v g g      A A A O

For  1,1 , 0    ,        v g v v g g         A A A O

We have            ' ' ' ' ' '' 2,
h g

v g h v h d v g h v g h v h v h     
        A A A A A A

Taking the 2 normL  in X , we have:

           2 2' ' ' '
'' 2 '' 2

X X

v g h v h v g h v h
v h v h   

 

 

  

  
   

A A A A
A A

    2' '2 23
2 2 2, , , , , ,

i
X

x t v g v g h x t v v hh
h

x t
  

 
 

    
    

 ñ X

A A

   ' '
2 2, , , , , ,x t v g v g h x t v v g h

h   


 

     
   ñ

A A

    2' ' 2 23
2, , , , , ,

i
X

x t v v g h x t v v h h

x t
 


 

    
  

  X

A A

   
0

2' '
2 2, , , , , ,t

I t

x t v g v g h x t v v g h
h dtdx   


 

            
 
 
  ñ

A Af

   
0

2' ' 2 23
2, , , , , ,t

iI t

x t v v g h x t v v h h
dtdx

x t
 


 

        
  
 

  X

A Af

Using Lagrange's formula for some  0;1

 
0

21
'' 2 2 2

0

, , ,
t

I t

x t v g v g h h d dtdx    
 
       
 
 
   ñA
f

 
0

21 2 23
'' 2 2

0

, , ,
t

iI t

h
x t v v g h d dtdx

x t   
      
  
 

   XA
f

  
0

21 2 2
2 2 2 2 2

0

, , ,
t

iI t

h
x t v g v g h h d dtdx

x t
     

             
     

  
f

ñ ñ X
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  
0

21 2 2
2 2 2 2 2

0

, ,
t

i iI t

h
x t v g h h d dtdx

x t
    

         
  
 
   

f

X X X

 
0

21 2 2322 2 2 2 2

0

, , ,
t

iI t

h
x t v g v g h h dtdx d

x t
     

             
   

  
f

ñ X X

 
0

21 2 23 322 2 2 2 2

0

, , ,
t

i iI t

h
x t v v g h h dtdx d

x t
    

            
   

f

ñ X X

From Newton-Leibnizformula, Cauchy inequality and using  4.4 ,we obtain

   2
1

0
lim ' , ,

h g
d v h g h o g

 

    
 A □

On the other hand, let  0 ;m f suppose that there exists a sequence mv of X such that for all integer m

We have:
in

 in
m

m

v v X

v v Y


 

f

f

Then there exists h X such that   2
1
' . ,

h g
d h g L



    
A spaceso that    

2

1 1
' ', ,m

h g h g X

d v h g d v h g
 

         
A A f 0 for

0m thus there exists 1  such that    
2

1 1
' ', ,

2m
h g h g X

d v h g d v h g


 

          
A A f

Indeed    
2

1 1
' ', ,m

h g h g X

d v h g d v h g
 

          
A A f

       
22 2 2 23 3

2 2 2 2 2 2

1 1

, , , , , , , , , , , ,m m m
i i X

h h
x t v v h x t v v x t v v h x t v v

x t x t
   

 

 
         

    X ñ X ñf f f f

   
0

22 2 2, , , , , ,
t

m m

t I

x t v v x t v v h dtdx        X X

f

f f

   
0

22 2
2 2, , , , , ,

t

m m
it I

h
x t v v x t v v dtdx

x t
 


   

  ñ ñ

f

f f

   
0

2
2 2 2, , , , , ,

t

m m

t I

x t v v x t v v h dtdx         ñ ñ

f

f f

   
0

2
2 22

2 2, , , , , ,
t

m m
it I

h
x t v v x t v v dxdt

x t
  


   

   ñ ñ

f

f f

0 0

2 2
2 2 216 24

t t

t t

t t

h
e h dt e dt

x t
  


 

  
f f

2240 t

X
e h
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According to the H-2 hypothesis for all  1 ;m f , mv v f et mv v  f pp. inY

   
2 22 2, , , , , , 0m mx t v v x t v v h      X X f f in the same way

   
22 2 2

2 2, , , , , , 0m m
i

h
x t v v x t v v

x t
  


    

  ñ ñ f f

Using  double integration, iwe obtain:

   
2

' ', , 0m
g h g h X

d v h g d v h g 
 

          
A A f for m f Which contradicts our hypothesis.

However, it was therefore  ' . ,
g h

d h g


 
  
A belongs to the space  ;X Y

We can therefore conclude that the second variation of the operator A equals  ' . ,
g h

d h g


 
  
A

,v h X  and for a given speed  ,v x t ,  ' . ,
g h

d h g


 
  
A in general it will be a linear operator space

 ;epE X Y .However, according to the above we can say that '
A is ԑ-continuousand ԑ-differentiable on

X .

Proposition 5.3Let I tobe a bounded open set in 3 .

Let  ,x t X and  ,h x t X , n there exists 0nd  such that for  0;1n  we have :

n
nd  , and nh is a small enough such that 1n X

h  , then

   2 , ,n n
nn

h x t   



1 J for 0,nv v f

(We say That    ,. ,nv x v x t f f almost over tI )

Proof:

Let  31
0, nv v H If such that for  1;n f , nv v f pp. in 0;I t t   f

Let nh be small enough as 1n X
h 

Let        2 2' ' ''
n n n n nh v h h v h v h      J A A A f such thatfor  0;1n  ,

       2 2' ' ''n n n
n n n n nh v h h v h v h        J A A A f

We get        
0

2 21 1
, , ,

t

n n
n nn n

I t

h x t h x t dtdx    
 

   J J
f



Gossan Pascal Gershom et al., Proof of Uniqueness And Differentiability of The Solutions of
Compressible Non Stationary Dynamic Systems Solutions

14846 | P a g e

       
0

2 21
, , , , , , , , ,

t

n n n
n n n n n n n n nn

t Q

x t v h v v h x t v v h x t v h x t dtdx     

            ñ ñ ñ

f

f

So from Lagrange's formula  11 fora some  0;1 , the equality becomes:

     
0

1
2 2 2 2

0

1
, , , , ,

t

n n n
n n n nn

t I

x t v h h x t v h d x t dtdx      


 
     

 
   ñ ñ

f

f

     
0

1
2 2 2

0

1
, , , , ,

t

n n
n n nn

t I

x t v h x t v d h x t dtdx     


 
     

 
   ñ ñ

f

f

From Cauchy Schwarz inequality, we deduce that

     
1 12 2 21

2 2 2 2

0

, , , , ,
t

n
n n n

t I t I

x t v h x t v d h dtdx x t dtdx    
   
       

     
    ñ ñ

f f

0 0

t

f

     
1 12 2 21

2 2 2

0

, , , , ,
t

n
n n n X

t I t I

x t v h x t v d dtdx x t dtdx h    
   
      

     
    ñ ñ

f f

0 0

t

f

On the other hand, 0nv v f and 0n
nh  pp. in 0;I t t   f then

   , , , , 0.n
n nx t v h x t v     ñ ñ f

This ends the proof.□

Proposition 5.3.Let I a bounded Lipchitz open interval in 3 .And Let v X Such that v and v Z .Let g be

small enough such that 1
X

g 

Suppose that the operator at any point of 0;I t t   f satisfies the following inequality:

       , , , ,
Z X

v x t v x t k v x t v x t      5.3

Then for ,  >0k  , the operator A satisfies :

       ' ', , 4 1 t

XW
v x t v x t k e v v

      A A  5.4

Proof:

           
2 23 3

' '

1 1

, , , ,
W i i W

g g
v v v v v v g v v v v g

x t x t     
 

 
           

        
X ñ X ñA A
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       
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2 2 2 216 16

t t
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t I t I

e v v dtdx e v v dtdx  
   
        
      
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f f

       4 , , , ,t

X X
e v x t v x t v x t v x t        

           4 1 , ,t

XW
v v e k v x t v x t

      A A

Remark5.3in the same way, we can also show that, the operator T satisfies the inequality  5.4 .On the other hand, P and T are

two continuous linear applications and from the Proposition 5.3, the operator  v  P T is also Lipchitz. Indeed if we take

   v v v     vA A P T , we simply show that

           max , 4 1t

XW
v v v v c e k v v

                  
  A P T A P T  5.5

Theorem5.4

Assume that the initial terms    2.3 , 2.4 and assumptions H-1, H-2on and U are satisfies.

Suppose that there exists a real 1   such that for all b , with 0 b   or
1;2

max 4 t
j

j
b e


 then there exists a time

0;t t t  f f and an unique solution  0 0, , ev v  R of the problem  4.1 for all    31 4
0 0 0, , ev H Q L Q Y   

More:    31 4
0H Q L Q Y X  

   0 0 0 0, , , ,e ev v    is ԑ-continuous and ԑ-differentiable.

On the other hand the operator R is strongly differentiable on    31 4
0H Q L Q Y  as an application on the space  ;X  and a

- weak topology in X .

Proof

Consider Q a subspace of X :       3 31 4
0 0 0 0 0: ,  , I  et  such that : , ,e eQ v X Y v H L I Lv v          

Let vZ an operator defined from the condition  2.3

   31 4
0:v Q Y H Q L Q  Z
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 0 0, ,v Lv v 

Using the norm on Q , we how that Lv is linear, continuous and has an inverse which is also continuous, more
 

1 1

4
v

exp t


Z

f

Furthermore, if the inequality  5.4 and  5.5 are satisfied, vZ v is continuous and reversible, more, vvA is Lipchitz, then using

Hadamard theorem, we can write that for all v Q  . The operator

     
0

'
0 0

' , , , ,

t

h gg h
t I

v Lv d v h g d v g h dtdx v  

 
           

 
 
f

A P T : Q     31 4
0Y H I L I  has a continuous

inverse function in the following form:      
0

1 '
0

' , , , ,

t

h gg h
t I

v Lv v h g v g h dtdx v  


 
           

 
 A P T
f

:

   31 4
0Y H I L I   Q .

  1
v
 has an inverse Lipchitz.function, then there is  an unique solution  v VR . However according to the Proposition 5.3,

  1
v
 isԑ-strongly differentiablefunction, then for all v Q  obtained by the strong theorems of differentiable function that  is

s-continuous ands- differentiable function and  ;X  is strongly differentiable onspace    31 4
0Y H I L I  . □

CONCLUSION
In this paper, we have presented a mathematical model in the third order time for a given tumor, the model based on Navier–Stokes
equations with some initial parameters and conditions.

An estimate is given for the speed v of cancer cells with which it grows and spreads (to determine a tumor's rate of growth and
spread).

The addition of linear members to our first system allowed us therefore to find a field in which we could solve this problem.
However, the results obtained can be used in the theory of optimal command, to establish the necessary optimality conditions, where
differentiable functional solution depending on parameters, as well as applications that are part of the type of constraints: equalities
and inequalities, which it value as being determined.
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