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There are many sub classes of univalent functions. The objectives of this paper is to introduce new 

classes and we have attempted to obtain Application of Fraction Calculus and Other Properties for 

the classes          and           
 

 

 

 

 

 

 

 

 
 
   

  
 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

  

 
 

 

 

INTRODUCTION  
 

Let   denote the class of  functions       of the form  
 

        ∑   
 
                                                                                                                                                                              ………(1) 

 

which  are univalent in the unit disc     {                 } 
 

Definition 1.1 :A function        is said to be close to convex of order              if  

   {     }    for all     
 

A function         is said to be in the subclass      of starlike function if  

  (
      

    
)          0      

 

Definition 1.2 : A function          is said to be in the subclass      of convex  function if  
 

  (   
      

    
)         

 

Definition 1.3: Let        ∑   
 
                     ∑   

 
                            then the convolution  is defined as  

 

             ∑  

 

   

   
                                                                                                                                                                           

 

Definition 1.4 :  If   and   are regular in   , we say that   is subordinate to   , denoted by       or             , if there exist a 

Schwarz function  , which is regular in   with        and          

   such that              ,    . In particular if   is univalent in    , we have the equivalence  

           if and only if            and           
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Definition 1.5 :We say that a function       is in the class         if it satisfy  
 

                

                 
 

    

    
                                                                                                                                                                    

 

for      ,          
 

Furthermore a function       is said to belong to the class          if and only if                     
 

THEOREM 1.1:A function           ∑   
 
                                 is in              if and only if  

 

∑{                [ (         )           ]}  

 

   

       

 

PROOF: Suppose     is in          

Therefore  from(1.5.1) we have  
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[

                
                 

]   

   {
                

                 
}
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|
                                  

 [                 ]  [                ]
|                                                                                                                      …………….(1.1) 
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        ∑[            (         )]

 

   

   
  

 

From (1.1) we have  
 

|
 ∑ [               ] 

      
 

       ∑ [            (         )] 
      

 
|             

 

Since Re ( ) < |    . We obtain after choosing the values of   on real axis and letting     

we get  

∑{                [ (         )           ]}  

 

   

       

 

COROLLARY 1.1  If              then  
 

   
     

                [ (         )           ]
 

 

and the equality holds for  
 

       
     

                [ (         )           ]
   

  

THEOREM 1.2:A function           ∑   
 
                                 is in               if and only if 

 

∑{[                   ]   [           ]   [           ]}  

 

   

       

 

PROOF: Suppose     is in           
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If and only if        is in          
Let              
 

Therefore  from(1.1) we have  
 

|
                                  

 [                 ]   [                ]
|                                                                                                                           

 

|
 ∑ [                   ]  

 
     

       ∑ { [           ]   [           ]}   
  

   

|             

 

Since Re ( ) < |    . We obtain after choosing the values of   on real axis and letting     

we get  
 

∑{[                   ]   [           ]   [           ]}  

 

   

       

 

COROLLARY 1.2If               then  

   
     

[                   ]   [           ]   [           ]
 

 

and the equality holds for  

       
     

[                   ]   [           ]   [           ]
   

 

Application of Fraction Calculus and Other Poperties 
 

Various operators of fractional calculus have been studied in the literature rather extensively.  Now we recall the following 

definitions. 
 

DEFINITION 2.1 The integral operator studied by Bernardi is  
 

  [ ]  
   

  
∫           

 

 

 

 

DEFINITION 2.2  The Jung-Kim Srivastava operator  is  
 

        
  

     
∫ (   
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)
  

   

   
  

 

THEOREM 2.1:  If                then   [ ] is also in the class            
 

PROOF: Let         ∑   
 
      then  

 

  [ ]  
   

  
∫ (  ∑  
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Since           then  
   

   
   so we have  

 

∑
{                [ (         )           ]}

     
(
   

   
)  

 

   

 ∑
{                [ (         )           ]}

     
  

 

   

   

Therefore   [ ] is also in the class            
Similarly we can prove if                 then   [ ] is also in the class             
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THEOREM 2.2 :Let           . If    [ ] is in the class            then  

        ∑   
 
     is univalent in       when 
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     {                [ (         )           ]}
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PROOF: Let  

  [ ]    ∑  

 

   

   
   

  
∫           

 

 

 

So  
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Therefore it is sufficient to prove that  

|       |    

||       ||   | ∑
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Therefore  

∑
      

   
  

 

   

          

Also since    [ ] is in the class            
Therefore 

∑
{                [ (         )           ]}

     
  

 

   

   

 

 

      

   
        

{                [ (         )           ]}

     
 

 

    *
     {                [ (         )           ]}

           
+

 
   

 

 

Hence the proof of theorem is complete. 
 

THEOREM 2.3 Let           . If    [ ] is in the class             then  

        ∑   
 
     is univalent in       when 

 

  
   

 
((

     {                [ (         )           ]}

          
)
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THEOREM 2.4 Let               . Then  the Jung-Kim Srivastava operator  is  
 
 

        
  

     
∫ (   
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is also in the class            
 

PROOF: We have  
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Since  
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We have  
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 ∑{                [ (         )           ]}  

 

   

       

 

Therefore, by THEOREM 1.1 we have  
 

                   
 

THEOREM 2.5: Let               . Then the Jung-Kim Srivastava operator  is  
 

        
  

     
∫ (   

 

 
)
    

 

              

 

is also in the class             

 
 

THEOREM 2.6:Let               then for every     then the function  
 

                 ∫
    

 

 

 

    

 

is also in the class            

 

PROOF 
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Since (    
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Therefore we have  
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{                [ (         )           ]} (    
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by THEOREM 1.1 we have 
 

                  
 

THEOREM 2.7:Let                then for every     then the function  
 

                 ∫
    

 

 

 

    

 

is also in the class             
 

THEOREM 2.8:Let               then for every     then the function  

              ∫
    

 

 

 

    

is also in the class            
 

Proof 
 

              ∫
  ∑   
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Since 
 

 
   

 

Therefore we have  
 

∑
{                [ (         )           ]} (
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by THEOREM 1.1 we have 
 

                  
 

THEOREM 2.9:Let                then for every     then the function  
 

              ∫
    

 

 

 

    

 

is also in the class             
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