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ARTICLE INFO ABSTRACT

Authors divided the exploration extreme in functions and functional for the purposes of optimization
solutions. Shows that the search extremes in functionals consists in algorithmization calculations.
Whereas the search for the extremes of the function is a static optimization consisting mainly of
linear programming and nonlinear.

INTRODUCTION
Preliminaries

Theorem 1.1 For the function = , + ( , )
wherein "z" contained in R, obtained derivative (Szu-Hoa Min
1944):

′ = lim→ + − ( )
Theorem 1.2 However, when , + ( , ) have a
continuous partial derivatives of the first row then: = +

, where the substitution is obtained:lim→ + − ( )
Szu-Hoa Min (1944) assuming that for = + ℎpointed that
the result of this action is as follows:= ( + ℎ, + ), ′ = ( + ′ℎ, + ′ )
To sum up:

 Theorem 1.1 assuming the existence of the form f(z)
as a function of non-analytical, its derivative can not
exist.

 Theorem 1.2 gives new information if k and h.

Urban (1908), Ban and Gal (2002) same as Szu-Hoa Min
(1944) concluded that it is wrong to combination of the
function non-analytical and analytical in one form analytic
function. Urban (1908) concluded that the analyticity function
is a "basis for an infinite number of claims creating a finite
number of observations." In any normed spaces suited
assumption (series) Taylor for the function of the real-valued or
vector.

Theorem 2.1 Taylor's theorem means that if a function f
transforms a closed set [a, b] in a normed space Y ( : [ , ] →

) will become (n+1) times differentiation in a continuous
manner, and then each point x of the interval (a, b) will be
expressed by the formula of Taylor (Kreminski 2010,
Domański 2016):= + −1! + −2! + ⋯+ − ! + ( , ), is the rest (peano), estimated for ∈ [ , ]:‖ , ‖ ≤ + 1 ! | − |
assuming that ≥ 0: ( ) ≤
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In the above formula to the right of the symbol „=” occurs a
polynomial (algebraic sum) Taylor. Depending on the
subsequent derived differentiation the function ensue at a
sufficiently low rest (Deadman and Relton, 2016).

Theorem 2.2 Conversely, where a=0, can obtain formulas
McLaurin (Pogány and Tomovski 2006):= 0 + (0)1! + ⋯ + 0− 1 ! + ( )!
Theorem 2.3 In cases where function f transforms a set D
which is a subset or equal to R ( ⊆ ) in a normed space Y
( : → ) having derivatives of any a row in point ∈
appears a Taylor series (Domanski 2016), where it is assumed= ( ):1! ( )( ) −∞

Functions and Their Extremes

Theorem 3.1 The function f:: →
where:⊂
Optimization procedure seeks a value such that ∗ ∈ .
However, for each ∈ \ ∗ , wherein finding the maximum
of function occurs:< ( ∗)
Finding the minimum of the function occurs:> ( ∗)
Theorem 3.2. In search extreme can be used a mathematical
model describing the optimization. Let X - state space (any
finite set), : → - objective function:( ) , ∈ ⊆
or ( ) , ∈ ⊆
To sum up:

 Theorem 3.1 is simple, but the function at some real
problems is complicated, making it difficult to find the
optimum (extreme).

 On the basis of Theorem 3.1. the mathematical
description of the problem to the search for extremes
requires bring to the model of optimize the functional
spaces. Extreme value depending on the formulation
of the task will be the largest and the smallest, but
always extreme (extreme definition of a function -
optimization of static).

 Theorem 3.2 by optimization task is understood as
finding a point from set which is the the largest
or the smallest.

 Find the optimum complex functions it is possible
using optimization algorithms.

Prospecting Extreme of Function

Extremum of the function is the optimal point at which the
value of the objective function is the best. It may be the largest

and the smallest value. Tasks the search for extreme of function
is called static optimization. Can be distinguished groups such
as: continuous programming, linear programming and
nonlinear programming.

Theorem 4.1 The definition of continuous programming
describes the model:: ⟹∈ ⊆
It can be carried out without restrictions and with restrictions
(Pichler and Tomasgard 2016).

Theorem 3.2 The task without restrictions amounts to form:= =
The exception is the search for one-dimensional (n=1):= , =: ⇒
Theorem 3.3 The tasks with restrictions calculated according to
the formula:= : = 0, ℎ( ) ≤ 0: → , ℎ : →
The theorem of linear programming form of the objective
function is always a linear (Renegar 1995):= ∝ + + + ⋯ +
where: – real number

The task of maximizing the objective function:=
The task of linear programming can exist of discrete character
in the objective function form (Renegar 1994, 1995)::	 ⟹
where:= ⊂== (without restrictions) , ⊂ (with restrictions)
For binary programming:= ⊂
Prospecting Extreme of Functionals

Knapsack problem. With the definition that is searched for
such a subset in which the total value (cj) was the largest and
also the sum of weights (wj) is not greater, and possibly equal
from the listed capacity backpack.

Theorem 5.1 The value of cj and the size (weight) wj at each
element in the set of N is specified. Maximization problem
takes the following form:

≤ , = 0	 	1,			 = 1, … ,
gdzie: B – the maximum capacity of the backpack
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When the number of components is reduced, the assumption of
maximize consists:

≤ ,			0 ≤ ≤ ,			 = 1, … ,
The calculus of variations. The search for extremes
(functional) in functional spaces can be achieved in accordance
with the question of the calculus of variations. Functionals in
this space reflect the number of real, measurable, which usually
constitute the definite integral, stationary, sometimes imported
to a differential form. However, the task of variational calculus
is a solution in given area and differential equations searching
the area of given point.

Theorem 5.2 The basic equation of the calculus of variations is
an equation Eulera-Lagrange'a, in which the solution takes the
form:

′ − = 0
Whereby the functional is defined as follows:

= , ′ ,
were:

x(t) - functions
S - stationarity

For the function x (t), S must take extreme. The function with
extreme values of definite integral is solutions of the equation
calculus of variations. Eulera-Lagrange'a method used in the
calculus of variations, looking for the road, which will be the
shortest, minimize costs (outlays).

Assuming the existence of a few independent variables
analyzed process or phenomenon, which is only one dependent
variable in the equation, the problem of variations rely to find
extreme functional of the form:= ( , , , , , , )
where:≡ , , 	,, , - searched function, in which the value of functional
is extreme

Whereas, the variance assumes the form:= , , = , , − ( , , )
where:	( , , ) - comparison function

The solution of calculus of variations equation results with
finding a function representing examined phenomenon in such
a way that its functional, or integral depending has been
minimized to a suitable degree.
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