

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 7, Issue, 12, pp. 14729-14731, December, 2016 International Journal of Recent Scientific Research

Research Article

SOME NOTES ABOUT CI-REGULAR LOCAL RINGS

*FatemehMohammadiAghjeh Mashhad

Islamic Azad University, Parand Branch, Parand, Iran

ARTICLE INFO

ABSTRACT

Article History:

Let (R, m, k) be a commutative Noetherian local ring. In this paper, we define CI-regular local rings and we will study some of their properties. Also, we will characterize regular local rings.

Received 06th September, 2015 Received in revised form 14th October, 2016 Accepted 23rd November, 2016 Published online 28th December, 2016

Key Words:

Complete intersection dimension; complete intersection ring; CI-regular local ring; regular ring.

Copyright © **FatemehMohammadiAghjeh Mashhad.**, **2016**, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Prerequisites

Throughout this paper, (R, m) is a local ring and all rings are commutative and Noetherian with identity. The projective dimension is a familiar and famous numerical invariant in the classical homological algebra. One of the fascinating theorems which is related to this dimension, is Auslander-Buchsbaum-Serre Theorem ((Auslander *et al*, 1956) and (Serre, 1956)) which asserts that R is a regular ring if every finitely generated R-modules has finite projective dimension. Motivated by this, Auslander and Bridger (Auslander *et al*, 1969), introduced the Gorenstein dimension (abbr. G-dimension) for any finitely generated R-modules and they proved that R is Gorenstein when every finitely generated R-module has finite G-dimension.

The G-dimension has a very essential role for studying Gorenstein homological algebra and it was studied in more details in (Auslander *et al*, 1969) and (Enochs *et al*, 2000). Let us recall the definition of G-dimension. Let M be a nonzero finitely generated R-module. The G-dimension of M is zero, $Gdim_R M = 0$, if and only if the natural homomorphism $M \rightarrow Hom_R(Hom_R(M, R), R)$ is an isomorphism and $Ext_R^i(M, R) = 0 = Ext_R^i(Hom_R(M, R), R)$ for any i > 0. We set $Gdim_R 0 = -$. Also, for an integer n, $Gdim_R M \le n$ if and only if there is an exact sequence $0 \rightarrow X_n \rightarrow X_{n-1} \rightarrow \cdots \rightarrow X_1 \rightarrow X_0 \rightarrow M \rightarrow 0$

*Corresponding author: **FatemehMohammadiAghjeh Mashhad**

More recently, Avramov, Gasharov and Peeva (Avramov *et al*, 1997) introduced the concept of complete intersection

of R-modules such that $Gdim_{\mathbb{R}}X_i = 0$ for any $0 \le i \le n$.

dimension for finitely generated R-modules as a generalization of projective dimension. They proved that R is complete intersection when every finitely generated R-module has finite complete intersection dimension. For defining complete intersection dimension, we need the definition of quasideformation of R. A quasi-deformation of R is a diagram of local ring homomorphisms $R \to R \leftarrow Q$ such that $R \to R$ is faithfully flat and $R \leftarrow Q$ is surjective with the kernel which is generated by a Q-regular sequence.

The complete intersection dimension of a finitely generated R-module $M, Cldim_R M$ is defined as follow:

= $\inf pd_Q M \otimes_{h} R - pd_Q R R R Q$ is a quasi - deformation.

These homological dimensions satisfy in the following inequalities

$$Gdim_R M \quad CIdim_R M \quad pd_R M \tag{1}$$

with equality to the left of any finite quantity, see (Avramov *et al*, 1997).

We denote the category of finitely generated R-modules by mod(R), the subcategory of mod(R) consisting of all free R-modules by F(R), the subcategory of mod(R) consisting of zero module and all R-modules M such that $Gdim_R M = 0$ (resp.

Islamic Azad University, Parand Branch, Parand, Iran

 $Cldim_R M = 0$) by G(R) (resp. CI(R)). By using (1), we have the following inclusion relations between the subcategories of mod(R) F R CI R G R.

Takahashi (Takahashi, 2008) defined R to be G-regular if G(R)=F(R). We define R to be CI-regular if CI(R)=F(R). In this paper, we study some properties for CI-regular local rings and we will show that if mR is a CI-regular ring, then R is a CI-regular ring too. Also, we will prove that R is regular if and only if R is complete intersection and CI-regular.

RESULTS

We start this section by the following definition.

Definition 1. We say that a local ring (R, m) is CI-regular if CI(R) coincides with F(R).

Lemma 2. Let (R, m) be a local ring and M be a finitely generated R-module.

For a faithfully flat local ring homomorphism R = S, there is an inequality

 $CIdim_R M$ $CIdim_S(M \otimes_R S)$

with equality when $CIdim_S(M \otimes_R S)$ is finite.

Let f: Q = R be a surjective local ring homomorphism with kernel generated by Q-regular sequence $x = x_1, ..., x_n$. Then

 $CIdim_R M \quad CIdim_O M - n$

When xM=0 and also if $x = x_1, ..., x_n$ is an M-regular sequence, then

$$CIdim_R \frac{M}{xM} \quad CIdim_Q M$$

with equality when $Cldim_0M$ is finite.

Let a be an ideal of R and a R be the a-adic completion of R. Then

 $CIdim_R M = CIdim a_R(M \otimes_R a_R).$

If $Cldim_R M$ is finite, then $Cldim_R M = dept \mathbb{Z} R - dept \mathbb{Z}_R M$.

Proof. See (Avramov et al, 1997).

Lemma 3. Let (R, m) be a local ring and ${}^{m}R$ the m-adic completion of R. If ${}^{m}R$ is a CI-regular ring, then R is a CI-regular ring too.

Proof. Let M be a finitely generated R-module such that $CIdim_R M = 0$. Then $M \otimes_R {}^m R$ is a finitely generated ${}^m R$ -module and $CIdim_R M = CIdim {}_m_R(M \otimes_R {}^m R)$ by Lemma 2(3). Since ${}^m R$ is CI-regular ring, then $M \otimes_R {}^m R$ is a free ${}^m R$ -module. Then M is a free R-module by (Avramov, 1965).

Lemma 4. Let (R, m) be a local ring and $\mathbf{x} = \mathbf{x}_1, \dots, \mathbf{x}_n$ an R-sequence. If $\frac{R}{\mathbf{x}R}$ is a CI-regular ring, then R is CI-regular ring, too.

Proof. By induction it is enough to consider the case in which x consists of a single R-regular element x. Let M be a finitely generated R-module such that $Cldim_R M = 0$. Since $Gdim_R M = 0$, then x is an M-regular element by (Christensen, 2010). Then $Cldim_R \frac{M}{xM} = 0$ by Lemma 2(2) and so $\frac{M}{xM}$ is a free

 $\frac{R}{R}$ -module by the assumption. So M is a free R-module by (Bruns *et al*, 1993).

Note that the converse of the above Lemma is not necessary correct in general.

Example 5. Let R = K[[x]], where K is a field. So R is a regular ring and then it is CI-regular. But $S \coloneqq \frac{R}{x^2R}$ is not CI-regular ring. Because *Cldim_SK* is finite by (Avramov *et al*, 1997) while pd_SK is infinite.

Remark 6. Let $f: \mathbb{R} = S$ be a local ring homomorphism and R is a CI-regular. If fd_Rf is finite, then may be S is not CI-regular ring. Assume that $\mathbb{R} = K[[x]]$, where K is a field and $S := \frac{\mathbb{R}}{x^{2R}}$. Let $f: \mathbb{R} = S$ be the natural local ring homomorphism. Then Example 5 shows that S is not CI-regular while R is a CI-regular ring.

Proposition 7. Let (R, m) be a local ring. If R is CI-regular ring, then the formal power series ring $R[[X_1, ..., X_n]]$ is CI-regular ring.

Proof. Since $R = \frac{\mathbb{R}[[X_1, \dots, X_n]]}{(X_1, \dots, X_n)}$, the assertion follows from Lemma 4.

Lemma 8. Let (R, m) be a local ring. Then R is CI-regular if and only if $CIdim_R M = pd_R M$.

Proof. () Let M be a finitely generated R-module. It suffices to show that $Cldim_R M$ $pd_R M$. Without loss of generality, we assume that $Cldim_R M$ is finite. Set $n \coloneqq Cldim_R M$. By (Wagstaff, 2004), there exists an exact sequence

 $0 X_{n} X_{n-1} \cdots X_{1} X_{0} M 0,$

such that $CIdim_R X_i = 0$ for any 0 *i n* and so by the assumption, X_i is projective for any 0 *i n* which implies that $pd_R M$ *n*.

() is trivial.

Next, we present a criterion for specification regular local rings.

Theorem 9. Let (R, m, k) be a local ring. The following are equivalent:

R is regular,

R is complete intersection and CI-regular.

Proof.(*i ii*) By (Bruns *et al*, 1993), R is complete intersection and for any finitely generated R-module M, pd_RM is finite, and so by (Avramov *et al*, 1997), $pd_RM = Cldimd_RM$ which implies that R is CI-regular by Lemma 8.

ii i By (Avramov *et al*, 1997) and Lemma 8, pd_Rk is finite, and so R is regular by (Bruns *et al*, 1993).

Definition 10. Let (R, m) be a local ring. The global CI-dimension of R is

Lemma11. Let (R, m, k) be a Noetherian local ring. If glCl - dim(R) is finite, then $glCl - dim R = Cldim_Rk$.

Proof. It is clear that $Cldim_R k$ glCl - dim(R). Since glCl - dim(R) is finite, then $Cldim_R M$ is finite for any finitely generated R-modules M. So $Cldim_R M$ $dept \mathbb{Z} R$ by Lemma 2 (4). As depth R = Cldim_R k, the assertion is followed.

Acknowledgement

This research was in part supported by a grant from Islamic Azad University, Parand Branch, Iran.

References

- Auslander M. and Buchsbaum D.A,(1956). Homological dimension in Noetherian rings. Proc. Nat. Acad. Sci. U.S.A., 42.
- AuslanderM. and BridgerM, Stable module theory, American Mathematical Society, Providence, R.L., 94, (1969).

- AvramovL.L, Homological dimensions and related invariants of modules over local rings, (1965), preprint.
- AvramovL.L., Gasharov V.N. and PeevaI. V, (1997). Complete intersection dimension. Inst. Hautes Etudes Sci., Publ. Math, 86: 67-114.
- BrunsW. and Herzog J. Cohen-Macaulay rings, Cambridge Studies in Advanced Math., 39, (1993).
- Christensen L.W., Gorenstein dimensions, Lecture Notes in Mathematics, 1747, Springer-Verlag, Berlin, (2000).
- SerreJ.P, (1956). Sur la dimension homologique des anneauxet des modules Noetheriens. Proc. Intern. Symp., Tokyo-Nikko, 1955, Science Council of Japan, 175-189.
- Takahashi R, (2008).On G-regular local rings. Comm. Algebra, 36 (12): 4472-4491.
- WagstaffS.S, (2004). Complete intersection dimensions for complexes. J. Pure Appl. Algebra, 190: 267-290.

How to cite this article:

FatemehMohammadiAghjeh Mashhad.2016, Some Notes about Ci-Regular Local Rings. Int J Recent Sci Res. 7(12), pp. 14729-14731.