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ARTICLE INFO ABSTRACT

The purpose of the present paper is to consider some subclasses of generalized Pascu classes of
functions with respect to symmetric points and obtain sharp upper bounds for the generalized second
Hankel determinant | − μ | for an analytic
function	 ( ) = + ∑ z∞ μ	is	real	and	|z| < 1 belonging to these classes.

INTRODUCTION

Definitions

Let denote the class of functions of the form ( ) = +∑ z∞ which are analytic in = z: |z| < 1 and S is the
subclass of functions in which are univalent.

The functions of the form Ρ(z) = 1 + ∑ p z∞ which are
regular in the open unit disc = z: |z| < 1 with the condition
Re Ρ(z) > 0 are Carath ́ odory Functions [1]. Let ℘denote
the class of Carathéodory Functions.

Let ( ) = ∑ z∞ be analytic in E. For ≥ 1, the q
Hankel determinant [7, 8]of is defined by

n = …… 						⋮⋮⋮⋮…
We are interested in the particular case when = = 2. The
second Hankel determinant was studied by various authors
including Hayman [5] and Pommeranke[9, 10]. We are
interested in sharp upper bounds for the functional | −
32for certain subclasses of analytic functions.

Sakaguchi [11] introduced the concept of univalent starlike
functions with respect to symmetric points. A function ∈ is

univalent starlike with respect to symmetric points if and only

if
′ ( ) > 0,and the class of functions may be denoted

by S ∗.

Das and Singh [2] extended the concept of symmetric points to
convex and close-to-convex functions. A function ∈ is said
to be univalent convex w. r. t. symmetric points if and only

if
′ ′

′ > 0	and class of such functions is denoted

by .

is the class of close-to-convex functions in with respect
to symmetric points if there exists a function ( ) = +∑ z∞ ∈ S ∗		such	that ′ ( ) > 0.
If there exists a function	ℎ( ) = + ∑ z∞ ∈K 		for	which ′ ( ) > 0,
then the class of functions in may be denoted by ( ).
Let ∗ denote the class of functions in A which satisfy the

condition ( ) > 0,				 ∈ S ∗.On replacing byℎ∈ , the corresponding class may be denoted by ( )∗ .
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Let ≥ 0	and ′ ≠ 0. Then ∗( ) is the class of

functions in with respect to symmetric points if there exists

a function ∈ S ∗such that
( )( ) + ′( ) = Ρ(z). If

is replaced by ℎ∈ K in the condition of ∗( ), the
corresponding class is denoted by ( )∗ ( ). Recently Singh and
Singh [4] obtained obtained the estimates of second Hankel
determinant for the classes ∗( ) and ( )∗ ( )
The classes ∗( ) and ( )∗ ( ) are respectively defined as∈ ;	 2 ′− (− ) + 2 ′′− (− ) = Ρ(z),			∈ S ∗ and∈ ;	 2 ′ℎ − ℎ(− ) + 2 ′′ℎ − ℎ(− ) = Ρ(z),			h ∈ K .
Preliminary Lemmas

The following lemmas are required to establish our results.

Lemma 2.1 ([3]). If Ρ z ∈ ℘, then |p | ≤ 2 k = 1, 2, 3, … .
Lemma 2.2 ([6]). If Ρ z ∈ ℘, then2p = p + 4 − p , (2.1)4p = p + 2p 4 − p − p 4 − p +2 4 − p 1 − | | z , (2.2)

for some x and z with| | ≤ 1	and	|z| ≤ 1.

MAIN RESULTS
THEOREM 3.3Let ∈ ∗ . Then| − μ | ≤8 2B − μKC B − μK − μ1 + 2α

										if	μ ≤ 0;32C B − μK + μ1 + 2α
		if	0 ≤ μ ≤ BK ;

μ1 + 2α
																											if		 BK ≤ μ ≤ 2BK ;8 μK − 2BC μK − B + μ1 + 2α

							if		μ ≥ 2BK ,
																										

3.13.23.33.4
where B = 1 + 2αK = 2 1 + α 1 + 3αC = 32 1 + α (1 + 3α) 1 + 2α

																																						 3.5
The results are sharp.

Proof. Since ∈ ∗ , we have2z ′(z)g z − g − z + 2αz ′′(z)g z − g − z = P z .																																			 3.6
Equating the coefficients in (3.6), it is easily established that

= p2(1 + α)= p + b3(1 + 2α)= p + p b4(1 + 3α)
																																																																								 3.7

Again g ∈ ∗ implies that2zg′(z)g z − g − z = P z .																																																																	 3.8
Identifying the terms in (3.8), we get= p2= p2= p4 + p p8

																																																																									 3.9
Combination of (3.7) and (3.9) gives= p2(1 + α)= p2(1 + 2α)= 2p + p p8(1 + 3α)

																																																																			 3.10
System (3.10) and (3.5) ensures thatC − μ = Bp 4p + Bp 2p − μK 2p
which, by lemma (2.2), can be written asC − μ = Bp p + 2p 4 − p x− p 4 − p x + 2 4 − p 1 − |x| z+ Bp p + 4 − p x − μK p + 4 − p x
for some x and z with |x| ≤ 1 and |z| ≤ 1.3.11 			C − μ= 2B − μK p+ 3B − 2μK p 4 − p x− 4 − p B − μK p + 4μK x + 2Bp 4 − p 1 −x2z.
Replacing p by p ∈ 0, 2 and using triangular inequality,
(3.11) takes the formC| − μ | = |2B − μK|p + |3B − 2μK|p 4 − p δ+ 2Bp 4 − p 1 − δ+ 4 − p |B − μK|p + 4|μ|K δ ,				δ= |x| ≤ 1,
which can be put in the formC| − μ | ≤ 																																																										 3.12 									

≡ F δ .
Since F′ δ ≥ 0 and therefore F δ is increasing function in0, 1 and takes its maximum value at δ = 1. (3.12) reduces toC| − μ | ≤ 																																																											 3.13 									
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≡ G p . ThenC| − μ | ≤ Max	G p .																																													 3.14 				
Case (i) μ ≤ 0.
Then G p = − 2 B − μK p + 8 2B − μK p − 16μK.G p attains its maximum value at p = μ

μ
andmaxG p = μ

μ
− 16μK. Putting the value of maxG p

in (3.14), we obtain (3.1).

Case (ii)0 ≤ μ ≤ .

Then G p = − 2 B − μK p + 16 B − μK p + 16μK.
Since G′ p ≥ 0, maxG p = G 2 = 32 B − μK + 16μK.
With this value of maxG p , (3.2) follows from (3.14).

Case (iii) ≤ μ ≤ .

Then G p = − 8 μK − B p + 16μK which implies thatG p ≤ 16μK.

Case (iv) ≤ μ ≤ .

Then G p = − 2 2μK − 3B p − 8 2B − μK p + 16μK.
In this case also G p ≤ 16μK.

Combination of cases (iii) and (iv) with (3.14) gives (3.3).

Case (v)μ ≥ .
Then G p = − 2 μK − B p + 8 μK − 2B p + 16μK.
It is easy to show that G p is maximum at p = μ

μ
andmaxG p = μ

μ
+ 16μK. Subtituting the value ofmaxG p in (3.14), we arrive at (3.4).∎

Remark. Putting α = 0 in the theorem, we get the Corollary
3.2.

On the similar pattern as above, we can have the following
result.

THEOREM 3.4Let ∈ ( )∗ , then

| − μ |
≤

8 5B − μKC 3B − μK − 49μ81 1 + 2α
,														μ ≤ 0;8 5B − 2μKC 3B − μK + 49μ81 1 + 2α
, 0 ≤ μ ≤ 5B2K ;49μ81 1 + 2α

,																														5B2K ≤ μ ≤ 5BK ;8 μK − 5BC μK − 3B + 49μ81 1 + 2α
μ ≥ 5BK ,

where B = 27 1 + 2αK = 98 1 + α 1 + 3αC = 2592 1 + α (1 + 3α) 1 + 2α
Remark. On taking α = 0 in the theorem, we obtain the
Corollary 3.4.
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