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The purpose of the present paper is to consider some subclasses of generalized Pascu classes of
functions with respect to symmetric points and obtain sharp upper bounds for the generalized second
determinant
function f(2) = 2+ Xy_2a,z" pisrealand |z| < 1 belonging to these classes.
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univalent starlike with respect to symmetric points if and onl
INTRODUCTION e espect fo symmete p Y
iffe e 0,and the class of functions may be denoted
Definitions by S: .

Let 4 denote the class of functions of the form f(z) = # +
Yhes 1z"which are analyticin £ = z:|z| < 1 and S isthe
subclass of functionsin A which are univalent.

The functions of the form P(z) = 1+ Y§ |pkzk which are
regular intheopenunitdisc E = z:|z| < 1 with the condition
Re P(z) > 0 are Carathéodory Functions [1]. Let gdenote
the class of Carathéodory Functions.

Let f(2) = Y%.4@,z" be analytic in E. For g = 1, the g'"
Hankel determinant [7, 8]of f isdefined by

Aplntq ...ﬂ”“_.l_l
l:.‘I1I|ﬂ|1|'l' ...ﬂl-”
H'-'l n = o 1
Bptg-10n4g - Bptig-2

We are interested in the particular case wheng = = 2. The
second Hankel determinant was studied by various authors
including Hayman [5] and Pommeranke[9, 10]. We are
interested in sharp upper bounds for the functional |i:ids -
£ra32for certain subclasses of analytic functions.

Sakaguchi [11] introduced the concept of univaent starlike
functions with respect to symmetric points. A function f € A is
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Das and Singh [2] extended the concept of symmetric points to
convex and close-to-convex functions. A function f A issaid
to be univalent convex w. r. t. symmetric points if and only
o zf

ifRe ——

feg=f-z&

> 0 and class of such functions is denoted

by K.

{-.is the class of close-to-convex functionsf in A with respect

to symmetric points if there exists a function g(z) = z +
2f =

—— >0

00 n
Y2 bz S: suchthat Re T
If there exists a functionB(z) = z+ Y hespz"
K. for which Re 2l 2 > 0,

then the class of functionsf z in Amay be denoted by € .
Let ; denote the class of functions in A which satisfy the
conditionRe ﬁ >0, g S;.On replacing ghy
it;, the corresponding class may be denoted by € ;.
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Let > 0and 22 2/ 2 # 0. Then {;(a) is the class of iy = ﬁ
functions f in 4 Wlth respect to symmetric pointsif there exists ps + by
. (- f = ifaxf' 2z _ Qg —0 = 37
afunction g S; such that 53508 350D - P(z). If 17 3(1+ 20)
g is replaced by K: in the condition of (; (i), the _ P+ piby
corresponding class is denoted by &, (). Recently Singh and fe = 4(1+ 30)
Singh [4] obtained obtained the estimates of second Hankel Again 5. implies that
determinant for the classes ©:; (@) and €, () gang s Imp
229'(z
The classes T; (@r) and Ty () are respectively defined as # =Pz. 38
Foa: 2zf 2 2arf z _ P@), g | dentifying the termsin (3.8), we get
gz -g(-2) gz -49(-7) Dy
hy = —
S, and ) p2
. III.I 22;.: p . zﬂz:f.u % B P h K Ir_:lj = ? 39
P4 Bz -B(-2z) Bz -0B(-z) @, J by = Zj+pl8p:
Preliminary Lemmas Combination of (3.7) and (3.9) gives
The following lemmas are required to establish our results. P
Lemma21([3]).1f Pz  ,thenlpyl< 2 k=123, .. . % o1+ )
Lemma 2.2 ([6]).If P z , then G = ¥
) ) 1T 2(1+ 20) 310
2p; = pitt 4-pt X, (21) _2p3t pip;
gz —2 T2
4ps = Py’ + 2py 4 - p. x-py 4= ptoats 8(1+ 30)
24-p* 1- [|xff (2.2) System (3.10) and (3.5) ensures that
for some x andZW|th|.1:| < land|z] < 1. C ayas — pag® = Bpy 4py + Bpy? 2p; - pK 2p; *
MAIN RESULTS WhICh bermma(Z 2), canjbewnttenas
C ayas — pay™ = Bpy p +?p. 4-py”
THEOREM 33Letf T, a .Then P A-pt Xt 24- pI |x|

+Bpy pft 4-pyt X - pKpt+ 4- p.'

- <
laza, ~ pas’| for somex and zwith |x] < 1 and |z] < 1.

8 2B- pK * g

- ifu< O; 311 C azay - pas®
CB-pK 1+ 2a* =0 31 o :H j25-“Kp|
2B—pK M ifos psE; 32 5 + 3B~ 2uK pyf 4- pyt 5
C 1+ 2a+ K - 4-p© B- pr,‘+4pr‘+ZBp,4 pi© 1-
v it B << 2B 33 X2z.
1+ 20 2 mgsHs ' Replacing p; by p 0,2 and using triangular inequality,
8 pK - 2B ? " 2B 34 (3.11) takes the form
+ 5 if pz —, '
CUK-B 1v2q? TH Clazas = pas®| = 12B - pK|p* + 3B - 2uK|p* 4 - p* &
where ) +2Bp 4- p* 1-3d°
B= 1+2a° + 4-p* |B- pKlp? + 4JulK &%, &
K=21+a 1+ 3a 35 = |x| < 1,
C=321+a(1+3a)1+2a* which can be put in the form
The results are sharp. Clayay — pay?| < 312
Proof. Since _lf T_'. o ,we have ]V T TE A Ty T W R | T S 11 I 11 L 1 R N ol
. P (ZF akg® O 1E3 ZeRNeErd s i EHp 0f (4 wRi0 R GEDN o Ak ZEulE il '\:lE-:::
ZZ_f (Z) + 20z j (Z) =pPz. 3.6 A=kt = EE - PLEap il = e TR = pT e 1 — el - BT b = 2L ||—_.;_::'
gz -g-z gz -g-z ll,;l!—:.-:'l.'-'—|':|.H—'Ii!|5"-'-'—r"-'—'.-II|:| =pf =0 =t R = R b = DOpi |—'-¢'-'|—:

> L]
| | = = ok = A = g = FHp A = P = L = K B =TRE R

Equating the coefficientsin (3.6), it is easily established that
=F ¢ .

Since F' 8 > 0 and therefore F & is increasing function in
0,1 and take_s its maximum value at 6 = 1. (3.12) reduces to
Clayay — pas?| < 3.13
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[A= — |_|H_l;'|‘ +1ZE —::uK:'r:l{ - F‘_I + |4 — p;:llfH-- ;.K!-p" — Ak} Fpe= il

Cib o ukipt GRS dpERtIE ptho Ot ptME ek deRD atu EL.E;_
[
-K = U EK
= . . . . B e 0
(A=t fpt + (2K =Sp* 0 = pR i+ = pf i = Nipt = 0 F—= 2= —;
K

12u |||-i'_l|.l: | 43U L'Jh_l_'_"l_'{ ='|'"_I |2 |::"_I|'f||1 '_:_Ipx | dgs] i

AT ] R T - TR E S VR S Bt VR 1 el TR o T TR T =

=G p.Then

Clayas — pas’| < MaxG p . 3.14
Case(i) p< 0.

ThenG p = -2 B- uK p*+ 8 2B - pK p* - 16uK.

G p attains its maximum vaue a p= - EEHEH and
maxG p = %— 16uK. Putting the value of maxG p

in (3.14), we obtain (3.1).
B

Case(ii)0<s p< W
ThenGp = -2B- pK p*+ 16 B- pK p* + 16pK.
Since Gp =0, maxGp =G 2 =32B- puK + 16pK.
With thisvalue of maxG p , (3.2) follows from (3.14).
B 3B
Case(m)Es us o
Then Gp = -8 uK- B p*+ 16pyK which implies that
G p < 16pK.

Case (Vi< s .

ThenG p = -2 2uK- 3B p*- 8 2B - pK p* + 16pK.
Inthiscasealso G p < 16pK.

Combi nation_of cases (iii) and (iv) with (3.14) gives (3.3).
Case (V)u = %

ThenG p = -2 pK- B p*+ 8 pK- 2B p* + 16pK.
2 yK—2B

It is easy to show that G p ismaximum at p = = and
maxG p = “:;.—EE+ 16uK. Subtituting the value of

maxG p in(3.14), wearrive at (3.4).

]
Remark. Putting a = 0 in the theorem, we get the Corollary
3.2

On the similar pattern as above, we can have the following
result.

THEOREM 34Letf Ty a , then

lazay — pay’| .
8 5B- K * 49
- <0
C3B-puK 811+ 2a -
8 5B - 2uK * 49y 5B
+ 7,0 ps =]
C3B- K 811+ 2a“ 2K
- 49 5B 5B
—_ — <P —;
8l 1+ 2a * 2K K
8 uK - 5B * 49y 5
+ U= —,
C uK- 3B 811+ 2a“ K
where
B=271+2u*

K=981+a 1+ 3a
C=2592 1+ a (1+ 30) 1+ 2a *
Remark. On taking a= 0 in the theorem, we obtain the
Corollary 3.4.
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