

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 7, Issue, 11, pp. 14113-14115, November, 2016 International Journal of **Recent Scientific Re**rearch

Research Article

COMPARATIVE STUDY ON BOOLEAN ALGEBRA, C-ALGEBRA AND PRE A*-ALGEBRA

Vijayabarathi S and Baskaran D

SCSVMV University, Enathur, Kanchipuram

ARTICLE INFO

ABSTRACT

Article History:

Generally algebra is the study of algebraic structure. In this paper Boolean algebra, C-algebra and Pre A*-algebra have been compared.

Received 15th August, 2016 Received in revised form 25th September, 2016 Accepted 24th October, 2016 Published online 28th November, 2016

Key Words:

Boolean Algebra, C-algebra, Pre A*algebra, Lattice

Copyright © Vijayabarathi S and Baskaran D., 2016, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

5.

INTRODUCTION

In 1850 Boole introduced Boolean algebras. A*-algebra is analogous to Ada (Algebra of disjoint alternatives) $(A, \land, \lor, (-)^{\sim}, (-)_f, 0, 1, 2)$. A*-algebra is denoted by $(A, \land, \lor, *, (-)^{\sim}, (-)_{f}, 0, 1, 2)$ where $\land, \lor, *$ are binary operations and $(-)^{\sim}, (-)_{f}$ are unary operations. P.Koteswara Rao[6] has proved that A*-algebra is generated by Boolean algebra and Boolean algebra over the matrices forms an A*algebra. C-algebra, A*-algebra are regular extension of Boolean logic to three truth values where the third truth value is undefined truth value. Pre A*-algebra [10] is a reduct of A*algebra which is analogous to C-algebra[5].

Preliminary **Boolean Algebra**[1] $(B, \lor, \land, ', 0, 1)$

Definition1.1.1: A non-empty set *B* together with two binary operations \lor , \land and one unary operation ' and two distinct elements 0 and 1 satisfying the following axioms for all $a, b, c \in B$ is called Boolean Algebra.

 $a \land b \in B$ 1. $a \lor b \in B$ $a \wedge b = b \wedge a$ $a \lor b = b \lor a$ $a \lor (b \lor c) = (a \lor b) \lor c \ a \land (b \land c) = (a \land b) \land c$ $a \wedge 1 = a$ $a \lor 0 = a$ 4.

5.
$$a \lor a' = 1$$
 $a \land a' = 0$
where a' is complement of a.

6.
$$a \lor (b \land c) = (a \lor b) \land (a \lor c) \quad a \land (b \lor c) = (a \land b) \lor (a \land c)$$

7. $a \land (a \lor b) = a \lor (a \land b) = a$

A Boolean algebra is a lattice which contains a least element and a greatest element and which is both complemented and distributive.

Boolean lattice is an algebra with two binary operations + and . and one unary operation'. Boolean lattice so considered are called Boolean algebras.

Every set is a partial ordered set. We can see application of lattices more in other science like chemistry and life science course. The complement of each element in Boolean algebra B is unique. It satisfies Idempotent, commutative, associative, absorption, distributive, complement laws. Here every maximal ideal is a prime ideal and vice versa.

Claud shanon's contribution is more in the application of Boolean algebra in circuit theory. Circuit theory is a major part in Electrical and Electronics Engineering, Electronics and Communication Engineering and day to day practical life.

C-algebra

C – algebra is defined by three truth values T, F and U. The third truth value is undefined. Here also every set is a poset. Calgebra has 7 postulates

Definition: An algebra of type (2.2.1) with binary operations \land,\lor , and unary operation ' satisfying the following identities:

(i)
$$x'' = x$$

(ii) $(x \land y)' = x' \lor y'$
(iii) $x \land (y \land z) = (x \land y) \land z$
(iv) $x \land (y \lor z) = (x \land y) \lor (x \land z)$
(v) $(x \lor y) \land z = (x \land z) \lor (x' \land y \land z)$
(vi) $x \lor (x \land y) = x$
(vii) $(x \land y) \lor (y \land x) = (y \land x) \lor (x \land y)$

The three element algebra C-{T,F,U} with the operations given by the following tables is a C-algebra.

\wedge	Т	F	U	\vee	Т	F	U	x	<i>x</i> '
Т	Т	F	U	Т	Т	Т	Т	Т	F
F	F	F	F	F	Т	F	U	F	Т
U	U	U	U	U	U	U	U	U	U

Note

- 1. The identities (i), (ii) imply that the variety of Calgebras satisfies all the dual elements of the identities (i), (vi)
- 2. \land and \lor are not commutative in C-algebra
- 3. The ordinary distributive law of \land over \lor fails in C-algebra.
- 4. Every Boolean algebra is a C-algebra.

Pre A*-algebra

Definition: An algebra
$$(A, \land, \lor, (-)^{\tilde{}})$$
 where A is

non-empty set with $1, \land, \lor$ are binary operations and $(-)^{\sim}$ is a unary operation satisfying

(a)
$$x = x \forall x \in A$$

(b) $x \wedge x = x$, $\forall x \in A$
(c) $x \wedge y = y \wedge x$, $\forall x, y \in A$
(d) $(x \wedge y) = x \vee y$, $\forall x, y \in A$
(e) $x \wedge (y \wedge z) = (x \wedge y) \wedge z$, $\forall x, y, z \in A$
(f) $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$, $\forall x, y, z \in A$
(g) $x \wedge y = x \wedge (x \vee y)$, $\forall x, y \in A$.

is called a Pre A*-algebra.

Example

 $3 = \{0, 1, 2\}$ with operations $\land, \lor, (-)$ defined below is a Pre A*-algebra.

	Ó	0	1	2	Ô	0	1	2	x	x~
	0	0	0	2	0	0	1	2	0	1
	1	0	1	2	1	1	1	2	1	0
	2	2	2	2	2	2	2	2	2	2
N	ote									

1. $(2, \land, \lor, (-)^{\sim})$ is a Boolean algebra. So every Boolean algebra is a Pre A* algebra

 The identities 1.1(a) and 1.1(d) imply that the varieties of Pre A*-algebras satisfies all the dual statements of 1.1

Comparison

Boolean algebra depends on two element logic. C-algebra and our Pre A*-algebra are regular extensions of Boolean logic to 3 truth values, the third truth value stands for an undefined truth value. Application of Boolean algebra is more in switching theory.

Boolean algebra is the centre of C – algebra. C- algebra has absorption law. Right distributive \land over \lor fails here. But it satisfies the distributive law of \lor over \land . C- algebra does not satisfy commutative law. Here every maximal ideal is a prime ideal. Boolean algebra has commutative and distributive law but these two laws are not in C - algebra particularly right distributive. Application of Boolean algebra is more in switching theory but that much is not for C-algebra and research is going on Boolean algebra is the centre of Pre A*algebra. Pre A* - algebra has seven laws. They are involution Idempotent, Commutative, distributive, associative, complement, Demorgan's laws. It does not satisfy absorption law. Pre A* - algebra becomes a lattice [10] when it satisfies absorption law. In Pre A* - algebra every maximal ideal is a prime ideal but there are prime ideals which are not maximal [8].

Pre A* - algebra is a distributive but in C- algebra ordinary right distributive law \land over \lor fails. But it has left distributive law \lor over \land C – algebra has absorption law. Pre A* - algebra is Commutative but C- algebra is not commutative. Pre A* - algebra instead of absorption law it has $x \land y = x \land (x \lor y), \forall x, y \in A$, which is not in C- algebra and Boolean algebra.

CONCLUSION

Boolean Algebra is the centre of Pre A^* - algebra and C-algebra.

Commutative law is in Boolean Algebra and Pre A*-algebra but not in C- algebra.

Absorption law is in Boolean Algebra and C-algebra but not in Pre A*-algebra.

complemented distributive Boolean algebra is a lattice but other two algebras are proved to be Lattices under certain conditions. Application of Boolean algebra is more in switching circuit theory. Whereas application of Pre A* algebra and C-algebra in this field is not more. Pre A*-algebra and C-algebra are extension of Boolean algebra. Cayley theorem is proved for the Boolean Algebra, centre of C-algebra and Pre A*-algebra.

References

- 1. Boolean Algebra Lattice theory by G. Birkhoff
- 2. Boolean Algebra Discreet maths by S.P. Rajagopalan, S.Sattanathan
- 3. Manes E.G: The Equational Theory of Disjoint Alternatives, personal communication to Prof. N.V.Subrahmanyam(1989)

- 4. Manes E.G: Ada and the Equational Theory of If-Then-Else, Algebra Universalis 30(1993), 373-394.
- 5. Fernando Guzman and Craig C.Squir: The Algebra of Conditional logic, Algebra
- 6. Universalis 27(1990), 88-110
- 7. Koteswara Rao.P, A*-Algebra an If-Then-Else structures(thesis) 1994, Nagarjuna University, A.P., India
- 8. Venkateswara Rao.J., On A*-Algebras(Thesis) 2000, Nagarjuna University, A.P., India
- 9. A.Satyanarayana, J.Venkateswara Rao, Prime and Maximal Ideals of Pre A*-algebra, Trends in Applied Sciences Research, 6(2): 108-120, 2011
- Vijayabarathi.S, Srinivasa Rao.K, Boolean Algebras of Pre A*- algebra, International Journal of Mathematics Trends and Technology, Vol.7, Number 1, March 2014, pp 61-67
- 11. K.Srinivasa Rao, Structural Compatibility of Pre A*algebra with Boolean algebra: A novel approach, Ph.D Thesis, 2009, Acharya Nagarjuna University, A.P., India.

How to cite this article:

Vijayabarathi S and Baskaran D.2016, Comparative Study on Boolean Algebra, C-Algebra And Pre A*-Algebra. *Int J Recent Sci Res.* 7(11), pp. 14113-14115.