

International Journal Of

# Recent Scientific Research

ISSN: 0976-3031 Volume: 7(6) June -2016

BETTER ADSORBING CAPACITY OF CPM-5 IN THE LIGHT OF ITS EQUILIBRIUM KINETICS

Prabin Kumar Sinha and Ajay Kumar Gupta



THE OFFICIAL PUBLICATION OF INTERNATIONAL JOURNAL OF RECENT SCIENTIFIC RESEARCH (IJRSR) http://www.recentscientific.com/ recentscientific@gmail.com



Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 7, Issue, 6, pp. 11942-11944, June, 2016 International Journal of Recent Scientific Research

# **Research Article**

## **BETTER ADSORBING CAPACITY OF CPM-5 IN THE LIGHT OF ITS EQUILIBRIUM KINETICS**

# Prabin Kumar Sinha<sup>1\*</sup> and Ajay Kumar Gupta<sup>2</sup>

<sup>1,2</sup>University Department of Chemistry, B.R.A Bihar University, Muzaffarpur, Bihar (842001) India

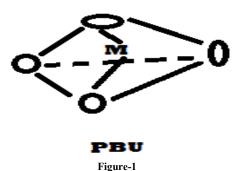
| ARTICLE INFO                                                                                                                                                                                              | ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Article History:<br>Received 05 <sup>th</sup> March, 2016<br>Received in revised form 08 <sup>th</sup> April, 2016<br>Accepted 10 <sup>th</sup> May, 2016<br>Published online 28 <sup>st</sup> June, 2016 | The adsorption equilibrium kinetics is one of the important factor in evaluating the stability of the adsorbent for the gas adsorption application, because it controls the time of a fixed bed adsorption system and has an impact on the amount of adsorbent required.<br>The adsorption equilibrium kinetics of $CO_2$ on CPM-5 was measured at two different temperatures of 298 K and 318 K using Freundlich adsorption isotherm. CPM-5, a MOF is highly porous having high specific surface area, high thermal and chemical stabilities &low densities was found to be better adsorbent for the adsorption of $CO_2$ gas. The amount of CO2 adsorbed was calculated by weighing CPM-5 before and after experiment. |

**Copyright** © **Prabin Kumar Sinha and Ajay Kumar Gupta., 2016**, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

# **INTRODUCTION**

The release of harmful greenhouse gases (such as  $CO_2$ ,  $CH_4$  and  $N_2O$ ) in to the environment is a growing concern for the world climate change. About 60% of global warming attributed to  $CO_2$  emissions.<sup>1</sup> Fossil fuel power plants are the largest potential source of  $CO_2$  emission. About three-quarters of the increase in atmospheric carbon dioxide is attributed to burning fossil fuels. The current levels of  $CO_2$  concentration in the atmosphere have increased by more than 35% since the industrial revolution.<sup>2</sup>

In this regards, scientists are trying to develop effective systems for  $CO_2$  removal from fuel gas by combining the high capacity and selectivity, fast kinetics, mild conditions for regeneration, and tolerance to moisture with minimal cost.


Adsorption in porous adsorbents is considered as an alternative viable approach for  $CO_2$  capturing. Adsorption into solid porous adsorbents is an attractive technology to improve or substitute the current  $CO_2$  adsorption technologies due to their high  $CO_2$  adsorption capacities, simple and easy to control process, low energy consumption, and superior energy efficiency.

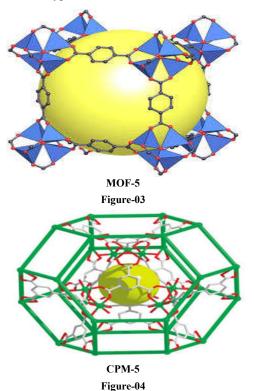
Many adsorbents have been developed and studied for  $CO_2$  capturing such as zeolites, activated carbons, modified mesoporous silica; however the common drawbacks of these conventional adsorbents are: high energy consumption for regeneration, low productivity and low  $CO_2$  capacities. New porous materials Metal Organic Frameworks with higher

adsorption capacity and selectivity are needed to improve the  $CO_2$  separation and storage process.

## Metal-Organic Frameworks

Metal organic frameworks (MOFs) have emerged as a new class of crystalline porous materials. Metal organic frameworks are crystalline solids consisting of metal ions (normally called nodes) linked by organic ligands (as linkers).<sup>3</sup>These materials are rigid organic linkers to form one dimensional, two dimensional and three dimensional networks, which is porous. Metal ions generally used for synthesis of MOFs are  $Zn^{2+}$ ,  $Ca^{2+}$ ,  $Cu^+$ ,  $Cu^{2+}$ ,  $Al^{3+} In^{3+}$  etc. and organic linkers are Phthalic acid, Isophthalic acid, Terephthalic acid, Trimesic acid, Benzene tri benzoate (BTB) etc.




On co-ordination of carboxylates group to a metal centre may results in many different secondary building units (SBUs)<sup>4</sup> to form one dimensional, two dimensional and three dimensional

University Department of Chemistry, B.R.A Bihar University, Muzaffarpur, Bihar (842001) India

networks. The secondary building units (SBUs) are designed by the four  $MO_4$  primary building units (PBUs). The octahedral geometry of the  $[M_4O(O_{12})]$  is designed by the four  $MO_4$ tetrahedral shairing.<sup>5</sup>

rection of the set of

These SBUs connected with an aromatic ring (organic linkers) to design different types of MOFs.<sup>6</sup>



MOFs are renowned materials having remarkable high specific surface area<sup>7,8</sup>, highly divers' structural chemistry and controlled pore size and shape<sup>9</sup>. The metal organic framework that is studied in the present work is CPM-5, which is a highly porous indium based metal organic framework with a surface area of 2187 m<sup>2</sup>/g. CPM-5 consists of In<sub>3</sub>O clusters as metal centre connected by 1, 3, 5 benzenetricaboxylic acid (Trimesic acid) (H<sub>3</sub>BTC) as a linear organic linker. In addition, CPM-5 has unique cage-based porous structures which contribute to a high CO<sub>2</sub> uptake capacity.

#### Experimental

The adsorption equilibrium kinetics is one of the important

factor in evaluating the stability of the adsorbent for the gas adsorption application, because it controls the time of a fixed bed adsorption system and has an impact on the amount of adsorbent required.

From the Freundlich adsorption isotherm-

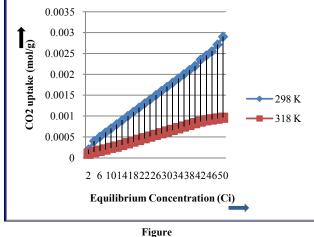
$$x/m = K C_i^{1/n}$$

where,

x/m is the adsorbed amount (mol/g), 'Ci' is the equilibrium concentration (mol/dm<sup>3</sup>)

The constant 'K' and 'n' were estimated from the experimental data of  $CO_2$  adsorption isotherm using the intercept and slope of a Linear Freundlich plot of ln (x/m) VslnCi.

| I able - |
|----------|
|----------|


| Equilibrium        | CO2 uptake | Temperature |  |
|--------------------|------------|-------------|--|
| concentration (Ci) | (mol/g)    | (K)         |  |
| 2                  | 0.0002     | 298         |  |
| 4                  | 0.0004     | 298         |  |
| 6                  | 0.0005     | 298         |  |
| 8                  | 0.0006     | 298         |  |
| 10                 | 0.0007     | 298         |  |
| 12                 | 0.0008     | 298         |  |
| 14                 | 0.0009     | 298         |  |
| 16                 | 0.0010     | 298         |  |
| 18                 | 0.0011     | 298         |  |
| 20                 | 0.0012     | 298         |  |
| 22                 | 0.0013     | 298         |  |
| 24                 | 0.0014     | 298         |  |
| 26                 | 0.0015     | 298         |  |
| 28                 | 0.0016     | 298         |  |
| 30                 | 0.0017     | 298         |  |
| 32                 | 0.0018     | 298         |  |
| 34                 | 0.0019     | 298         |  |
| 36                 | 0.0020     | 298         |  |
| 38                 | 0.0021     | 298         |  |
| 40                 | 0.0022     | 298         |  |
| 42                 | 0.0023     | 298         |  |
| 44                 | 0.0024     | 298         |  |
| 46                 | 0.0025     | 298         |  |
| 48                 | 0.0027     | 298         |  |
| 50                 | 0.0029     | 298         |  |

#### Table-2

| Equilibrium        | CO2 uptake | Temperature |  |
|--------------------|------------|-------------|--|
| concentration (Ci) | (mol/g)    | (K)         |  |
| 2                  | 0.00010    | 318         |  |
| 4                  | 0.00014    | 318         |  |
| 6                  | 0.00017    | 318         |  |
| 8                  | 0.00020    | 318         |  |
| 10                 | 0.00024    | 318         |  |
| 12                 | 0.00027    | 318         |  |
| 14                 | 0.00031    | 318         |  |
| 16                 | 0.00035    | 318         |  |
| 18                 | 0.00039    | 318         |  |
| 20                 | 0.00043    | 318         |  |
| 22                 | 0.00047    | 318         |  |
| 24                 | 0.00051    | 318         |  |
| 26                 | 0.00055    | 318         |  |
| 28                 | 0.00059    | 318         |  |
| 30                 | 0.00063    | 318         |  |
| 32                 | 0.00067    | 318         |  |
| 34                 | 0.00071    | 318         |  |
| 36                 | 0.00075    | 318         |  |
| 38                 | 0.00079    | 318         |  |
| 40                 | 0.00083    | 318         |  |
| 42                 | 0.00087    | 318         |  |
| 44                 | 0.00090    | 318         |  |
| 46                 | 0.00092    | 318         |  |
| 48                 | 0.00094    | 318         |  |
| 50                 | 0.00096    | 318         |  |

The adsorption equilibrium kinetics of CO<sub>2</sub> in CPM-5 was measured at two different temperatures of 298 K and 318 K. the amount of CO<sub>2</sub> adsorbed was calculated by weighing CPM-5 before and after experiment.

K is theisothermal equilibrium constant and 'n' are constant for a given adsorbent and adsorbate at a particular temperature.



# **RESULTS AND DISCUSSION**

The CO<sub>2</sub> adsorption equilibrium at temperatures 298 K and 318 K are plotted in the above figure. It was observed that the maximum amount of CO2 adsorbed is 0.0029 mol/g and 0.00096 mol/g at 298 K and 318 K respectively<sup>10,11</sup>

Finally, CPM-5 showed unique adsorption properties. Therefore, it can be considered as an attractive adsorbent for the separation of  $CO_2$  from fuel gases.

### Acknowledgement

The Authors are grateful to Department of Science & Technology (DST), New Delhi to provide financial support and Head, University dept. of Chemistry, B. R. A. Bihar University, Muzaffarpur for providing Lab facilities.

References

- Kiehl, J. T. and K.E. Trenberth, "Earth's Annual 1. Global Mean Energy Budget" Bulletin of the American Metrological Society. 78 (2002)197-208.
- EPA (2008). "Recent Climate Change: Atmosphere 2. Changes". Climate Change Science Program. Nature. 427(2009)138-145.
- 3. Czaja, Alexander U., Trukhan, Natalia, Muller "Industrial applications of Metal Organic Frameworks". Chem. Soc. Rev. 38(5): (2009)1284-1293.
- 4. M. Eddaudi, J. Kim, J.B Wachter, H K Chae, M O'Keeffe and O M Yaghi, J. Am. Chem. Soc.123 (2001)4368-69.
- J L C Rowsell, O M Yaghi, J. Am. Chem. soc. 5. 44(2005)4670-79.
- 6. Yaghi O. M, O'Keeffe, M. Ockwig, N. W. Chae, H. K, M. Kim. J. nature. 423 (2003), 705-708.
- 7. Chae, H.K., Siberio-Perez, D.Y., Kim, J.Y., Eddaudi, M. Matzger et al. nature. 427(2004), 523-527.
- Barrer, D. W. Zeolites molecular Seives(Krieger-8. 1984).
- 9. U. Muller, M. Schubert, F. Teich, H.Puetter, J. Mater.chem. 16(2006) 626-636.
- 10. Zhao Z, Li Z, Lin Y, Adsorption and diffusion of carbon dioxide on metalorganic framework (MOF-5). Industrial Engineering Reviews. 48(2009)10015-10020.
- Saha D, Bao Z, Jia F and Deng S, Adsorption of CO<sub>2</sub>, 11. CH<sub>4</sub>, N<sub>2</sub>O, and N<sub>2</sub> on MOF-5, MOF-177, and zeolite 5A, Environmental Science and Technology.44 (2010)1820-1826.

\*\*\*\*\*\*

## How to cite this article:

Prabin Kumar Sinha and Ajay Kumar Gupta.2016, Better Adsorbing Capacity of Cpm-5 In The Light of Its Equilibrium Kinetics. Int J Recent Sci Res. 7(6), pp. 11942-11944.

