

International Journal Of

Recent Scientific Research

ISSN: 0976-3031 Volume: 7(5) May -2016

STUDIES ON WEED DIVERSITY IN SOME SELECTED AGRICULTURAL FIELDS AT SPSR NELLORE DISTRICT, ANDHRA PRADESH, INDIA

Katari Bhaskar., Sunil Nautiyal., Rajanna L., Pavan Tikhile and Venkateswarlu K

THE OFFICIAL PUBLICATION OF INTERNATIONAL JOURNAL OF RECENT SCIENTIFIC RESEARCH (IJRSR) http://www.recentscientific.com/ recentscientific@gmail.com

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 7, Issue, 5, pp. 10925-10932, May, 2016 International Journal of Recent Scientific Research

Research Article

STUDIES ON WEED DIVERSITY IN SOME SELECTED AGRICULTURAL FIELDS AT SPSR NELLORE DISTRICT, ANDHRA PRADESH, INDIA

Katari Bhaskar^{1, 2}., Sunil Nautiyal²., Rajanna L³., Pavan Tikhile² and Venkateswarlu K⁴

¹Development Center, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu-641 046, India

²Ecological Economics and Natural Resources, Institute for Social and Economic Change,

Dr. VKRV Rao Road, Bangalore, 560 072, India

³Department of Botany, Bangalore University, Bengaluru, Karnataka 560056, India ⁴S.V. Degree College, Atmakur, SPSR Nellore Dt. Andhra Pradesh, India

ARTICLE INFO

ABSTRACT

Article History: Received 11th February, 2016 Received in revised form 14th March, 2016 Accepted 18th April, 2016 Published online 28th May, 2016

Keywords:

Biodiversity, Weeds, Rice field, Cotton field, Andhra Pradesh.

Weeds cause serious ecological problem in crop fields. Weed species can reduce crop production 12-98 percent depending on type of cultivation. It also results in reducing the high quantities of minerals, nutrients and moisture more efficiently than the crops in farm lands as they grow faster than the crops. The diversity and distribution of weed diversity is mainly dependent on soil, climatic, cropping, fertilizers and management factors. The present paper discusses the weed species diversity and distribution in various crop fields of south coastal Andhra Pradesh. The study is mainly conducted based on field survey across different cropping seasons during the year 2014-2015. Empirical field survey has been conducted in selected areas of various agricultural fields, since paddy is predominant crop in this region. The survey for the current was mainly conducted in rice fields followed by cotton and sugarcane. A total of 168 weed species were documented during the field survey belonging 50 different families of plant kingdom such as Mimoceaceae, Fabaceae Cesalpinaceae Amaranthaceae, Euphorbiaceae, Poaceae, Asteraceae Rubiaceae, Cyperaceaeand, Bignoniaceae etc. Out of 168 species, 27 were monocots and 147 species were dicots. The dominant families found in the study included Poaceae, Fabaceae, Acanthaceae, Amaranthaceae, Rubiaceae, Cyparaceae which consists of minimum ten species each. This paper mainly discusses about weed species diversity and distribution in crop fields and their management.

Copyright © **Katari Bhaskar** *et al.*, **2016**, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The undesirable or unwanted plants that grow in agricultural fields along with crops are known as weeds. Weeds being unwanted plant species growing along with crops and affect crop production. There are large numbers of weeds species growing widely in cultivated fields of India, of which some are introduced while others are native. Weeds are a menace as they have faster growth rate than the crop resulting in its rapid spread throughout the fields. It also absorbs higher nutrient content with greater efficiency than crop plants thus limiting its availability to crop plants (Murty et al, 2011). Weed species differ from other plants in their adaptation mechanisms to the environment. In addition, they have peculiar local characteristics in natural habitats which make them more competitive enhancing their growth (Vishwas et al, 2013). Generally weeds grown in all type of ecosystems but their intensity is greater in manmade ecosystem such as crop fields

wherein farmers desire growth of only agricultural crops and unprecedented growth of weeds in these lands will affect the farmers adversely. These weeds compete with agricultural crops for space, sun light, and nutrients which has an impact on the growth rate of desired crops thereby reducing yield and affecting quality (Kumar et al, 2013). Weed diversity causes great economic loss in crop fields with the yield reducing from 12 to 51 percent (Vishwas et al, 2013). Weed species also support diversity in animals like insects and micro organisms that may cause reduced crop production. The herbaceous species growing in cultivated lands are highly influenced by different factors like the biotic and abiotic factors, type of cultivation, season of cultivation (Kharif and Rabi), type of soil, irrigation types, use of fertilizers and type of weed management. The present study explores the different weed species and their distribution across different crop fields of Nellore district.

Study Area and Geographical Location

The current study focused on the south coastal district of Andhra Pradesh, Nellore district with an average latitude 14.43° N, longitude 79.97° E and at an elevation of 59 ft. The district spreads over an area of 13076 sq.km, accounting 4.75% of the total area of the state. The district is bounded in the east by Bay of Bengal, north by Prakasam district, south by Chittoor district and Chengalpattu district of Tamil Nadu State and on the west by Veligonda hills (Figure 1). The district primarily has 3 natural divisions from south to north and western belt.

Climatic Features

The study area falls under semi arid region of southern India. Climatically the study area is very hot with less rain fall and high temperature during summer months. Of the region have three seasons - summer from March to mid June, rainy season from September to November, rain fall mainly depend on North-west moon soon, the average rain fall is 992 mm in both seasons and winter from December to mid February.

Figure 1 Geographical location of the study area

Land Use and Agriculture

The total geographical area is distributed across 13.6 lakh hectares; of which around 20.09% is under forest land, 10.56 percent is barren and uncultivable land and non agricultural activates take up about 18.68%. The total area sown for cultivation forms 25.96 percent and cultivable waste and fallow lands consists of around 17.75 percent. The region has agricultural activities in both the Kharif and Rabi season. Rice (*Oryza sativa*) is the major crop cultivated throughout the district followed by Cotton, Tobacco, Chilly, Sugarcane etc. More recently farmers have started to venture into aquaculture. Vegetables and pulses are commonly grown in small areas and kitchen gardens for their own requirements.

MATERIALS AND METHODS

The present studies main objective is to document the weed flora in different crop fields such as Rice, Cotton and Sugarcane. Since rice is predominant crop in the study area, the study focused mainly on rice fields followed by cotton and sugarcane.

Survey and Sampling

The documentation of weeds in the study area has been conducted through extensive field survey during the study period. Random sampling methods were followed for the documentation and collection of specimens. The study was carried during 2014-2015 in different cropping seasons. The studies were conducted in selected areas (taluk) of the district i.e. Atmakur, Udayagiri, Gudur and Rapur. Several field trips were made to assess the weed species. Each field visit involved spending 7-10 days in the study area during each cropping season. The specimens were collected from the crop fields and its taxonomical character such as flowers, fruit, colour, odor, roots characters was recorded. Photographs of the sample specimens were taken for recording purposes. A herbarium was prepared where in the specimens were preserved according to BSI rules and regulations.

RESULT AND DISCUSSION

Extensive field survey was carried during the study period. In the present study a total 168 weed species were found in different agricultural fields belonging to 137 genera and 50 families (Figiure 2 and 3). Out of these 168 species, 27 were monocots and 141 were dicots; all monocots were dominantly present in both the crop fields. The dominant families were recorded from the study region and included species like Poaceae, Euphorbaceae, Fabaceae, Amaranthace, Asteraceae, Asclepiadaceae, Cyperacae, Convolvulaceae, Acanthaceae, Malvaceae, Solanaceae, Commelinaceae, Lamiaceae, Caesalpiniaceae, Cleomaceae and Onagraceae (Figure-4). Monocot represents the 16.06 % of the total weed flora of the region and 83.92 % were dicots. The top ten (10) families listed above contributed to 55.95 percent of the total documented weed species.

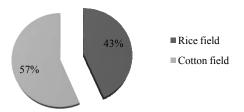


Figure 2 Weed species in the crop fields

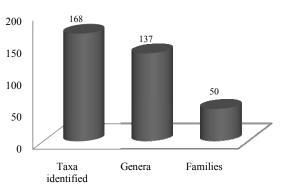
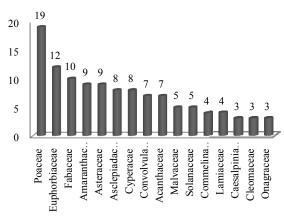
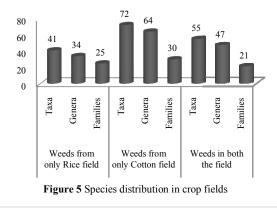



Figure 3 Weed diversity in crop fields

Weeds Species from Only Rice Field (Oryza Sativa)


Out of 168 species 41 weeds were recorded only from the rice field; belonging to 25 families and 34 genera. In rice field monocots, sedges were predominantly distributed. The families that were present in rice field according to dominance are as follows: Poaceae (8), Cyperaceae (7), Scrophulariaceae (3), Portulacaceae (2), Pontederiaceae (2), Polygonaceae (2), Nymphaceae (2). The rest of the families were present as single species.

Weeds Species from Only Cotton Field (Gossypium herbaceum)

72 species were recorded only from cotton field which belonged to 30 families and 64 genera. In cotton fields dicot species were present in abundance. Asclepiadaceae (8), Fabaceae (6), Euphorbiaceae (5), Convolvulaceae (5), Amaranthaceae (4), Euphorbiaceae (4), Malvaceae (4), Solanaceae (4), Asteraceae (3), Cucurbitaceae (3), Acanthaceae (2), Caesalpiniaceae (2), Lamiaceae (2), Menispermaceae (2), Mimosaceae (2), Rubiaceae (2), Verbenaceae (2) and other family's single species were reported.

Weeds in Rice and Cotton Field

Out of 168 weed species, 55 species were reported in both the fields which belonged to 21 families and 47 genera (Fig.4). Twenty one (21) family species of plant kingdom were distributed in greater frequency in both the fields. The dominant families recorded included Poaceae (10), Euphorbiaceae (07), Asteraceae (05), Amaranthaceae (05), Commelinaceae (04), Fabaceae (04), Cleomaceae (02). The other species were as listed from both the fields (Figure 5).

Iucn (International Union for Conservation of Nature) Status of Weed Species

IUCN provides the threatened species' taxonomy, conservation status and global distribution. In the study area a total 168 weed species were documented which included herbs, grasses, sedges, aquatic plants, shrub, semi shrub and creepers. The IUCN status has given value of species, their range and distributionand based on the IUCN list, one specie (Eclipta prostrata) was recorded under Data deficient (DD), 128 species are under Not evaluated and 39 species were reported as Least concern as per IUCN category such as Aeschynomene indica, Alternanthera sessilis, Ammannia baccifera, Aponogeton natans, Asteracantha longifolia, Bacopa monnieri, Brachiaria reptans, Centella asiatica, Commelina benghalensis, Cyperus difformis, Cyperus iria, Cyperus pangorei, Cyperus rotundus, Dentella repens, Desmodium triflorum, Echinochloa colona, Eichhornia crassipes, Fimbristylis dichotoma, Fimbristylis ferruginea, Grangea maderaspatana, Hydrilla verticillata, Ischaemum indicum, Lemna gibba, Ludwigia octovalvis, Mimosa pudica, Monochoria vaginalis, Nymphaea stellata, Nymphoides hydrophylla, Panicum psilopodium, Phyla nodiflora, Pistia stratiotes, Polygonum barbatum, Polygonum glabrum, Rhynchosia minima, Saccharum spontaneum, Sphaeranthus indicus, Tephrosia purpurea, Typha angustifolia and Wolffia globosa. No Endangered and Vulnerable species were reported (Figure 6). The recorded species from rice and cotton field and IUCN status has given Table 1.

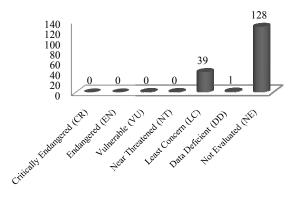
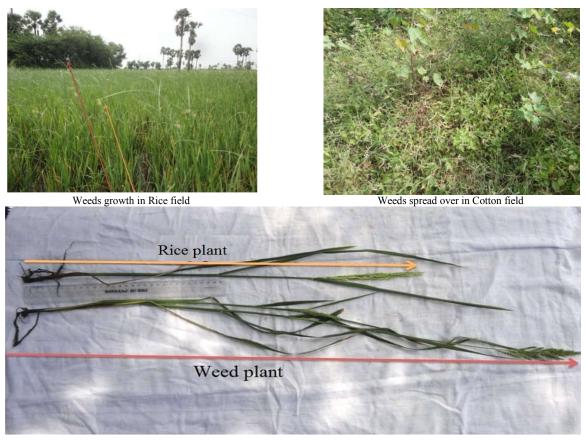


Figure 6 IUCN Status of weed species from the study region

DISCUSSION

It is essential to understand weed species to control weed diversity in crop fields. Several studies have been conducted on weed diversity and their distribution in various crop fields across the global level. To name a few, Saritha (2013) studied Celosia argentea in groundnut fields of Chittor district, Vishwas and Prakash (2013) studied the weeds of Satara district of Maharashtra, Sharrif and Forghanipoor (2011) studied the ecological character of weed flora of Iran, Kiran and Rao (2013) explored the weed flora of rice fields in Krishna district, Olorunmaiye and Olorunmaiye (2008) reported weeds of Maize field in Nigeria, Ramamoorthy et al, (2004) has discussed weeds of dry lands and how they can be controlled, Bambaradeniya and Gunatilleke (2002) described about ecological aspects of weed flora in an irrigated rice field of Sri Lanka, Ghani et al, (2013) studied weeds of Nile valley in Egypt, Bukun (2005) reported weeds of Cotton field in Turkey.

S.No	Botanical Name	Vernacular Name	Family	Rice field	Cotton Field	IUCN Status
1	Abutilon indicum (L.) Sweet	Tutturubenda	Malvaceae			NE
2	Acalypha indica L.	Muripenda	Euphorbiaceae			NE
3	Achyranthes aspera L.	Uttareni	Amaranthaceae	N,		NE
4	Aerva lanata (L.) Juss. Ex Schultes	Pindikura	Amaranthaceae	\checkmark	V	NE
5	Aeschynomene indica L.	Jeeluga	Fabaceae	,	V	LC
6	Ageratum conyzoides L.		Asteraceae	\checkmark	N	NE
7	Alternanthera pungens Kunth		Amaranthaceae	,	V	NE
8	Alternanthera sessilis (L.) R. Br.	Ponnaganti	Amaranthaceae	V	N	LC
9	Alysicarpus vaginalis (L.) DC.		Fabaceae	\checkmark	N	NE
10	Amaranthus spinosus L.	Mullu thotakura	Amaranthaceae		N	NE
11	Amaranthus viridis L.	Thotakura	Amaranthaceae	1	N	NE
12	Ammannia baccifera L.	M	Lythraceae	\checkmark	.1	LC
13	Anisomeles malabarica (L.) R. Br. Ex Sims	Moga-bira	Lamiaceae	.1	$\sqrt{1}$	NE
14 15	Apluda mutica L.	Konda gaddi	Poaceae	$\sqrt[n]{\sqrt{1}}$	N	NE LC
15	Aponogeton natans (L.) Engl. & K.Krause	Kittigaddalu	Aponogetonaceae	v	\checkmark	NE
10	Argemone mexicana L Aristida adscensionis L.	Kittanara Cheepuru gaddi	Agavaceae Poaceae	\checkmark	V V	NE
17	Aristida setacea Retz.	Cheepuru gaddi	Poaceae	v	N	NE
18	Aristolochia bracteolata Lam.	Gadidagadapaku	Aristolochiaceae		V V	NE
20	Aristolocina bracteolata Lani. Asteracantha longifolia (Schum.) Heine	Оашиадацараки	Acanthaceae	\checkmark	N	LC
20	Bacopa monnieri (L.) Pennell		Scrophulariaceae			LC
21	Bacopa monmert (L.) Feinien Barleria prionitis L.	Mullagorinta	Acanthaceae	V	\checkmark	NE
22	Basilicum polystachyon (L.)Moench.	Wunagorinta	Lamiaceae	v	V V	NE
23	Basilicum polystachyon (L.)Moenen. Bergia capensis L.		Elatinaceae	\checkmark	N	NE
24	Boerhavia diffusa L.	Atikamamidi	Nyctaginaceae	v	2	NE
23	Brachiaria reptans (L.) Gard.& Hubb.	Atikamamun	Poaceae	\checkmark	N	LC
20 27	Brassica nigra L.	Avalu	Brassicaceae	v	N	NE
28	Calotropis gigantea (L.) R.Br.	Jilledu	Asclepiadaceae		Ň	NE
20	Calotropis procera R. Br.	Tella Jilledu	Asclepidaceae		Ń	NE
30	Cardiospermum halicacabum L.	Buddakakara	Sapindaceae		Ň	NE
31	Celosia argentea L.	Duduakakara	Amaranthaceae	2	+	NE
32	Cleome viscosa L.	Kukkavaminta	Cleomaceae	1	+	NE
33	Centella asiatica (L.) Urban	Kukkavailiilla	Apiaceae	Ń		LC
34	Centotheca lappacea (L.) Desv.		Poaceae	Ń	\checkmark	NE
35	Chloris barbata (L.) Sw		Poaceae	Ń	+	NE
36	Cleome aspera Koen. Ex DC.		Cleomaceae	Ń		NE
37	Cleome gynandra L.	Vaminta	Cleomaceae	Ń		NE
38	Clitoria ternatea L.	Adavichikkudu	Fabaceae	•	Ń	NE
39	Coccinia grandis (L.) Voigt	Donda	Cucurbitaceae		Ń	NE
40	Cocculus hirsutus(L.) Diels	Dusari teega	Menispermaceae		, V	NE
41	Commelina benghalensis L.	Dusuir toogu	Commelinaceae	\checkmark	Ń	LC
42	Commelina longifolia Lamk		Commelinaceae	Ń	Ń	NE
43	Corchorus aestuans L.		Tiliaceae	Ň		NE
44	Corchorus trilocularis L.		Tiliaceae	Ń	\checkmark	NE
45	Crotalaria pusilla Heyne ex Roth.		Fabaceae		, V	NE
46	Crotalaria retusa L.		Fabaceae		Ń	NE
47	Croton banplandianum Bail.	Kusuma	Euphorbiaceae	\checkmark	Ń	NE
48	Cryptostegia grandiflora	114041114	Asclepiadaceae		, V	NE
49	Cucumis callosus (Rottler) Cogn.	Nakka dosakai	Euphorbiaceae		Ń	NE
50	<i>Cyanotis tuberosa</i> (Roxb.) Schult. & Schult.f.		Commelinaceae	\checkmark	Ń	NE
51	Cynodon dactylon (L.) Pers.	Garika	Poaceae	\checkmark	\checkmark	NE
52	Cyperus difformis L.		Cyperaceae	\checkmark		LC
53	Cyperus haspan L.		Cyperacae	\checkmark		NE
54	<i>Cyperus iria</i> L.		Cyperacae	\checkmark		LC
55	Cyperus pangorei Rottb.		Cyperaceae	\checkmark		LC
56	Cyperus rotundus L.	Thunga	Cyperacae	\checkmark	\checkmark	LC
57	Dactyloctenium aegyptium (L.)P.Beauv.	e e	Poaceae	\checkmark	\checkmark	NE
58	Datura metel L.	Nalla Ummetta	Solanaceae		\checkmark	NE
59	Dentella repens (L.)Forst.&Forst.f		Rubiaceae		\checkmark	LC
60	Desmodium triflorum (L.) DC		Fabaceae		\checkmark	LC
61	Dichanthium annulatum (Forssk.) Stapf.		Poaceae	\checkmark	\checkmark	NE
62	Digera muricata (L.) Mart.	Chenchalaku	Amaranthaceae	\checkmark	\checkmark	NE
63	Digitaria bicornis (Lam.) Roem, & Schult.		Poaceae	\checkmark		NE
64	Digitaria ciliaris (Retz.) Koel		Poaceae	\checkmark		NE
65	Diplocyclos palmatus (L.) Jeffrey		Cucurbitaceae			NE
66	Dipteracanthus patulus (Jacq.) Nees		Acanthaceae	\checkmark	\checkmark	NE
67	Echinochloa colona (L.) Link.		Poaceae	\checkmark	\checkmark	LC
68	Eclipta prostrata (L.)L.	Guntagalijeru	Asteraceae	\checkmark		DD
69	Eichhornia crassipes (Mart.) Solms	Gurrapudekka	Pontederiaceae			LC
70	Eleocharis geniculata (L.) Roem. & Schult.		Cyperaceae	\checkmark		NE
			Asteraceae		\checkmark	NE
71 72	Emilia sonchifolia (L.) DC Eragrostis tenella (L.) Beauv. Ex Roem. Ex Schult.		Asteraceae		•	NE


Table 1 Inventory of weed	species from	Agricultural fields
LUDIC I Inventory of week	species nom	i Grieururur neius.

73	Euphorbia hirta L.	Nanabala	Euphorbiaceae	V	V	NE
74	Euphorbia indica Lam.	InaliaUala	Euphorbiaceae	V	N.	NE
75	Euphorbia thatea Ean. Euphorbia thymifolia L.		Euphorbiaceae	V	1	NE
		Vialandara than		N		
76	Evolvulus alsinoides L.	Vishnukrantham	Convolvulaceae	1	N	NE
77	Fimbristylis dichotoma (L.) Vahl		Cyperaceae			LC
78	Fimbristylis ferruginea (L.) Vahl. Enum.		Cyperaceae	\checkmark	1	LC
79	Gomphrena celosioides Mart.		Amaranthaceae		V	NE
80	Grangea maderaspatana (L.)Poir.		Asteraceae	\checkmark	\checkmark	LC
81	Hedyotis puberula (G.Don) Arn.Pugill.	Chiruveru	Rubiaceae		\checkmark	NE
82	Heliotropium indicum L.	Nagadanthi	Boraginaceae			NE
83	Hemidesmus indicus (L.) Schult	Sugandhapala	Asclepiadaceae			NE
84	Hybanthus ennaespermus (L.) F.V.Muell	Sugananapana	Violaceae		Ń	NE
85	Hydrilla verticillata (L.f.) Royle.		Hydrocharitaceae	\checkmark	v	LC
		Danialas	Convolvulaceae	Ň		NE
86	<i>Ipomoea aquatic</i> Forsk	Panjaku		N	1	
87	Ipomoea carnea Jacq.	Samudrapala	Convolvulaceae		N	NE
88	Ipomoea obscura (L.) Ker-Gawl.		Convolvulaceae	,		NE
89	Ischaemum indicum (Houtt.) Merr.		Poaceae	\checkmark		LC
90	Jatropha gossypiifolia L.	Sima nepalam	Euphorbiaceae			NE
91	Justicia adhatoda L.	Addasaram	Acanthaceae		\checkmark	NE
92	Kirganelia reticulate (Poir.) Baill.		Euphorbiaceae		Ń	NE
93	Lantana camara L.	Phalikampa	Verbenaceae		1	NE
		Filalikaliipa		.1	v	
94	Lemna gibba L.		Araceae	V		LC
95	Leptochloa chinensis (L.) Nees		Poaceae		1	NE
96	Leucaena leucocephala (Lam.) de Wit	_	Mimosaceae		N	NE
97	Leucas aspera (Willd.) Link	Tummi	Lamiaceae		\checkmark	NE
98	Lindernia ciliate (Colsm.) Pennell		Scrophulariaceae	\checkmark		NE
100	Ludwigia octovalvis (Willd.)Bold		Onagraceae		\checkmark	LC
101	Ludwigia parviflora L.		Onagraceae			NE
102	Marsilia quadrifolia L.		Marsileaceae	Ń		NE
102	Merremia aegyptia (L.) Urban.		Convolvulaceae	Ń	2	NE
		Eliles als anno la lan		N	N	
104	Merremia tridentata (L.) Hall.f.	Elikachevalaku	Convolvulaceae	1	N,	NE
105	Mimosa pudica L.		Mimosaceae		N	LC
106	Mollugo nudicaulis Lam.		Molluginaceae			NE
107	Monochoria vaginalis (Burm.f.)Presl		Pontederiaceae	\checkmark		LC
108	Mukia maderaspatana (L.) Roem.		Cucurbitaceae			NE
109	Nelumbo nucifera Gaertn.	Tamara	Nelumbonaceae	\checkmark		NE
110	Nymphaea stellata Willd.	Allitamara	Nymphaceae	\checkmark		LC
111	Nymphoides hydrophylla (Lour.)O.Ktze	2 intumutu	Nymphaceae	Ň		LC
112		Kukka thulasi	Lamiaceae	V	.1	NE
	Ocimum americanum L.Cent.	Kukka ululasi		N	N	
113	Oxalis corniculata L.		Oxalidaceae		N	NE
114	Oxystelma esculenta (L.f.) R.Br.		Asclepiadaceae	1	N	NE
115	Panicum psilopodium Trin.		Poaceae	V		LC
116	Parthenium hysterophorus L.	Congress kalupu	Asteraceae	\checkmark	\checkmark	NE
117	Passiflora foetida L.	Gabbudonda	Passifloraceae		\checkmark	NE
118	Pavonia zeylanica (L.) Cav	Chirubenda	Malvaceae		\checkmark	NE
119	Pedalium murex L.	Yenugapalleru	Pedaliaceae		Ń	NE
120	Pergularia daemia (Forssk.) Chiov.	Juttepala tega	Asclepiadaceae		1	NE
		Juttepala tega				
121	Peristrophe paniculata (Forsk.) Brummitt		Acanthaceae	1	N	NE
122	Perotis indica (L.) Kutze.		Poaceae	N		NE
123	Phyla nodiflora (L.) Greene	Bokkenaku	Verbenaceae			LC
124	Phyllanthus amarus Schum.&Thonn.	Nelausiri	Euphorbiaceae	N	N.	NE
125	Phyllanthus debilis Klen ex Willd.		Euphorbiaceae	\checkmark	\checkmark	NE
126	Phyllanthus virgatus Forst.		Euphorbiaceae	\checkmark	\checkmark	NE
127	Physalis minima L.	Budama	Solanaceae		\checkmark	NE
128	Pistia stratiotes L.	Antaratamara	Araceae	\checkmark		LC
129	Polygonum barbatum L.		Polygonaceae	Ň		LC
				Ň		
130	Polygonum glabrum Willd.		Polygonaceae			LC
131	Portulaca oleracea L.		Portulacaceae			NE
132	Portulaca quadrifida L.		Portulacaceae	\checkmark	1	NE
133	Prosopis juliflora (Sw.) DC.	Karratumma	Mimosaceae		N.	NE
134	Rhynchosia minima (L.) DC.		Fabaceae		\checkmark	LC
135	Rivea hypocrateriformis (Desr.) Chhoisy.	Boddi tega	Convolvulaceae		\checkmark	NE
136	Rostellularia japonica (Thunb.) Ellis	č	Acanthaceae	\checkmark	\checkmark	NE
137	Ruellia tuberosa L.		Acanthaceae			NE
138	Saccharum spontaneum L.	Rellu	Poaceae	\checkmark	√	LC
138	Sebastiania sesban (L.) Merr.	Jeeluga	Fabaceae	Ň	1	NE
		U		v		
140	Securinega leucopyrus (Willd.) MuellArg.	Tellapurugudu	Euphorbiaceae		N	NE
141	Senna auriculata L.	Tangedu	Caesalpiniaceae		N,	NE
142	Senna italica (Mill.) Lam.	Nela tangedu	Caesalpinaceae		V	NE
143	Senna occidentalis L.	Kasintha	Caesalpiniaceae	\checkmark	\checkmark	NE
144	Sesamum alatum Thonn.		Pedaliaceae	\checkmark	\checkmark	NE
145	Sida acuta Burm.f.		Malvaceae	Ń	\checkmark	NE
146	Sida cordata (Burm.f.)	Gayapaku	Malvaceae	,	1	NE
140		Сауараки			1	NE
14/	Sida cordifolia L.		Malvaceae		N	NE NE
148	Solanum nigrum L.	Kamanchi	Solanaceae			

149	Solanum xanthocarpum Schrad & Wendl	Mullavankai	Solanaceae			NE
150	Spermacoce hispida (L.) K.Schum	Madana	Rubiaceae	\checkmark	\checkmark	NE
151	Sphaeranthus indicus L.	Bodasaram	Asteraceae		\checkmark	LC
152	Stachytarpheta jamaicensis (L.)Vahl		Verbenaceae		\checkmark	NE
153	Stemodia viscosa Roxb.		Scrophulariaceae	\checkmark		NE
154	Tephrosia purpurea (L.) Pers	Vempali	Fabaceae	\checkmark	\checkmark	LC
155	Tinospora cardifolia (Willd.) Hook.f. & Thoms	Tippa teega	Menispermaceae		\checkmark	NE
156	Tonningia axillaries (L.) O. Ktze		Commelinaceae	\checkmark	+	NE
157	Trianthema portulacastrum L.		Aizoaceae			NE
158	Tribulus terrestris L.	Palleru	Zygophyllaceae	\checkmark		NE
159	Tridax procumbens L.	Gaddi chamanthi	Asteraceae	\checkmark		NE
160	Tylophora indica (Burm.) Merr.	Kakkupala tega	Asclepiadaceae			NE
161	Typha angustifolia L.	Jambu thunga	Typhaceae	\checkmark		LC
162	Vernonia cinerea (L.) Less.		Asteraceae	\checkmark	\checkmark	NE
163	Vinca rosea (L.) G.Don		Apocynaceae		\checkmark	NE
164	Vigna trilobata (L.) Verdc.	Pillipesara	Fabaceae	\checkmark	\checkmark	NE
165	Waltheria indica L.		Sterculiaceae		\checkmark	NE
166	Wattakaka volubilis (L.f) Stapf	Kalisi	Asclepiadaceae			NE
167	Wolffia globosa (Roxb.) Hartog & Plas		Araceae	\checkmark	\checkmark	LC
168	Xanthium indicum Koen. Roxb.	Marulamatangi	Asteraceae		\checkmark	NE

Note: $\sqrt{Present}$, NE- Not Evaluated, LC- Least concern, DD-Data deficient

Phtoplate: 1

Growth rate of Rice and Weed species in the rice field

Murthy and his team has done much work on weeds in various crops of Andhra Pradesh with different aspects such as weeds in turmeric fields of Visakhapatnam and Kadapa (2011, 2014) where around 120 weeds were reported with various ecological aspects, weed diversity of north coastal Andhra Pradesh (2011), Phytosociological attributes of weeds in rice fields of Vishakhapatnam (2010), Phtytosociological attributes of North coastal Andhra Pradesh in (2012) and weed distribution in Sugarcane Fields (2013).

Ramamoorthy *et al*, (2004) said that the weed species diversity and distribution is dependent on climatic, edaphic and biotic factors. Sharrif and Forghanipoor (2011) reported more salinity and pH cause low weed diversity; however in the current the study region maximum numbers of species were reported. It covers 23.4% of weed species of Andhra Pradesh which was reported by Pullaiah and Chennaiah (1997).

Murthy and Venkaiah (2011) had reported 532 weed species in different crops such as rice, sugarcane, ground nut, finger millet and seasum but from this study 168 weeds species were exclusively present in rice and cotton fields. A total of 46 %

species are recorded form the rice fields, Echinochloa spp., Ischaemum indicum and Cyperus spp. are highly trouble species in rice fields (Bambaradeniya and Gunatilleke 2002). The studies shows that Poaceae, Cyperaceae, Amaranthaceae, Commelinaceae, Euphorbiaceae Asteraceae. and Scrophulariaceae species are highly distributed in rice fields where as in cotton fields Euphorbiaceae, Fabaceae, Poaceae, Solanaceae, Asclepiadaceae, Amaranthaceae and Acanthaceae are the most dominant species. Weed diversity in vegetable crops was studied by Gaddeyya and Kumar (2014) and they Asteraceae. Fabaceae. Euphorbiaceae reported and Amaranthaceae as the dominant families in vegetable crops. Of the total Cyperus spp., Echinochloa spp., Euphorbia hirta, hvsterophorus. Tridax procumbens Parthenium are predominantly present. Similar studies conducted in Satara region by Vishwas and Prakash (2013) reported that Parthenium hysterophorus, Ageratum conyzoidis and Euphorbia geniculata were dominant weed species in crop fields. Mani et al, (1975) had reported that Parthenium hysterophorus is mainly waste land species and spread throughout cultivation fields. Tamado and Milberg (2000) reported from Ethiopia, Parthenium hysterophorus, a species that has spread rapidly and now affects the livelihood of numerous small-scale farmers. Most of the weeds are herbaceous species, it's annual or biennial rather than perennial, these species complete their life cycle in shorter period leading to higher breeding (Kelton and Price 2009).

From the study region around 18 submerged, emerged and marshland weed species were recorded such as *Aponogeton natans*, *Asteracantha longifolia*, *Bacopa monnieri*, *Bergia capensis*, *Cyperus rotundus*, *Eclipta prostrate*, *Eichhornia crassipes*, *Hydrilla verticillata*, *Ipomoea aquatic*, *Lemna gibba*, *Marsilia quadrifolia*, *Monochoria vaginalis*, *Nelumbo nucifera*, *Nymphaea stellata*, *Nymphoides hydrophylla*, *Phyla nodiflora*, *Typha angustifolia* and *Wolffia globosa*, of this *Eichhornia crassipes*, *Nymphaea stellata*, *Nelumbo nucifera*, *Hydrilla verticillata* and *Typha angustifolia*. These are of primary concern in Indian agricultural fields (Varshney et al, 2008).

The present study shows that the majority of weed species reported from A handbook of some south Indian weeds by Tadulingam and Narayana (1932) were described about 108 weeds and in the revised edition 64 more species have been added by Rajasekhara and Sakharam (1955).

IUCN status is described as the value of a species and their range of distribution. From the study region a total of 39 least concern weeds are reported; of this *Brachiaria reptans*, *Commelina benghalensis, Panicum psilopodium, Tephrosia purpurea* found rich in cotton fields and *Cyperus rotundus, Lemna gibba, Marsilia quadrifolia* were found high in rice fields. Of the total least concern species 12 are aquatic weeds.

CONCLUSION

Studies on weed biodiversity in agricultural fields are essential to help prevent them. Many researchers have worked on weeds of Andhra Pradesh in various crops in different regions except the present study region. Keeping this in view, the present study was under taken to reveal weeds of this region. The present study describes the detailed weed diversity in rice and cotton fields and this investigation is helpful to make effective weed management and high yield production. It is also highly helpful to agriculturists, taxonomists and policy makers to make suggestion for farmers in the weed management and for high crop production. The study is a preliminary attempt made to document the weed diversity in rice and cotton fields, further research work is needed to carry for inventory of weeds in other crops and control weeds.

Acknowledgement

The help of and support from Agricultural officer of Nellore and Regional branch officers, farmers and field staff is thankfully acknowledged. Ms Sruthi Subbanna deserves our special thanks for the inputs and suggestions.

Reference

- Bambaradeniya, C.N.B. and Gunatilleke C.V.S. 2002. Ecological aspects of Weed flora in an irrigated rice field ecosystem at Bathalagoda in Sri Lanka. *Journal* of National Science Sri Lanka, 30 (3&4):123-147.
- Bukun B. 2005. Weed flora changes in cotton growing areas during the last decade after irrigation of harran plain in Sanliurfa, Turkey. Pak. *Journal Botany*, 37(3): 667-672.
- Gaddeyya, G. and Kumar, P.K. 2014. Studies on weed infestation of some agricultural fields at Visakhapatnam district, Andhra Pradesh. *Journal of Crop and Weed*, 10(2):419-429.
- Ghani, A. M., Soliman, A., Hamdy, R. and Bennoba, E. 2013. Weed flora in the reclaimed lands along the northern sector of the Nile Valley in Egypt, *Turkish Journal of Botany*, 37: 464-488.
- Google: http://www.iucnredlist.org/about. Assessed on August-18-2014.
- Kelton, J. A. and Price A. J. Weed science and management. Soils, plant growth and crop production - Vol.III. Encyclopedia of Life Support system (EOLSS), Developed under the Auspices of the UNESCO, EOLSS Publishers: 2009.
- Kiran, G.G.R. and Rao, A.S. 2013. Survey of weed flora in transplanted rice in Krishna Agroclimatic zone of Andhra Pradesh, India. *Pak Journal of Weed Science and Research*, 19(1): 45-51.
- Kumar, T., Reddy, B.T. and Murty, P.P. 2013. Weed Distribution in Sugarcane Fields of Srikakulam District, A.P., India. *Research Journal of Pharmaceutical, Biological and Chemical Sciences*, 4 (1):1380-1389.
- Mani, V.S. (1975). Indian Farming, 25: 15-16.
- Murty, P.P., Padal. S.B., Krishna, B.R., Rao, D.S. and Narayana, N.L. 2011. Ecological aspects of weed flora of turmeric (*Curcuma longa L.*) fields of Visakhapatnam District, A.P., India. *Journal of Biodiversity and Environmental Sciences*, 1(6):30-38.
- Murty, P.P. and Reddy, K.V.R. 2014. Weed flora of Turmeric (*Curcuma longa* l.) fields of Porumamilla Mandal, Kadapa A.P., India. *Journal of Science*, 4 (5):293-299.
- Murty, P.P. and Venkaiah, M. 2010. Phytosociological attributes of weeds in rice fields of north Coastal Andhra Pradesh, India. *International Journal of Current Research*, 7: 001-004.

- Murty, P. P. and Venkaiah, M. 2011. Biodiversity of Weed Species in Crop Fields of North Coastal Andhra Pradesh, India. *Indian Journal of Fundamental and Applied Life Sciences*, 1(2): 59-67.
- Murty, P.P. and Venkaiah, M. 2012. Phytosociological attributes of weed flora in major crops of north coastal Andhra Pradesh, India. *Pak Journal of Weed Science and Research*, 18(1): 107-126.
- Olorunmaiye, P. M. and Olorunmaiye, K. S. 2008. Weed Flora of a Maize/Cassava Intercrop under Integrated Weed Management in an Ecological Zone of Southern Guinea Savanna of Nigeria. Ethnobotanical Leaflets, 12: 784-800.
- Pullaiah, T. and Chennaiah, E. (1997). Flora of Andhra Pradesh, India. Scientific Publishers, Jodhpur.
- Pullaiah.T. 2007. Taxnomy of Angiosperms. Third Revised Edition. Regency Publication, New Delhi. Page No: 137.
- Ramamoorthy, K., Lourduraj, A.C., Thiyagarajan, T.M., Sekhar P. M. And Steware, B.A. 2004. Weeds and weed control in dry land agriculture a review. Agric. Rev., 25 (2): 79-99.

- Saritha P. 2013. Phytosociological studies on *Celosia* argentea in groundnut fields of Chittoor district. International Journal of Life Science Biotechnology and Pharma Research, 2 (1):128-132.
- Sharrif, M. M. and Forghanipoor, M. 2011. Study on Ecological Characters of Weed Flora in the Maize Fields of Saveh Regions. Advances in Environmental Biology, 5(5): 862-867.
- Tadulingam, C. and Narayana, G. V. 1932. A handbook of some south Indian weeds. (Revised and enlarged) Mudaliar, C. R. and Sakharam rao J. 1955.
- Tamado, T. and Milberg, P. 2000. Weed Flora in Arable fields of eastern Ethiopia with emphasis on the occurrence of *Parthenium hysterophorus*. Blackwell Science Ltd Weed Research, 40, 507-521.
- Varshney, J.G., Kumar, S. and Mishra J.S. 2008. Current Status of Aquatic Weeds and Their Management in India. The 12th World Lake Conference: 1039-1045.
- Vishwas, P. S. and Prakash, J. S. 2013. A Survey of Weed Flora in Crop Fields of Satara Tahsil (M.S.), India. Universal Journal of Environmental Research and Technology, 3 (2): 233-241.

How to cite this article:

Katari Bhaskar *et al.* 2016, Studies on Weed Diversity In Some Selected Agricultural Fields At Spsr Nellore District, Andhra Pradesh, India. *Int J Recent Sci Res.* 7(5), pp. 10925-10932.

