

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 7, Issue, 5, pp. 10902-10904, May, 2016

International Journal of Recent Scientific <u>Re</u>rearch

Research Article

DOUBLE DOMINATION NUMBER IN THE UNITARY ADDITION CAYLEY GRAPHS

Cristopher John S. Rosero

Mathematics Department, Cebu Normal University, Cebu City, Cebu, Philippines

	ARTICLE INFO	ABSTRACT
--	--------------	----------

Article History:

Received 29th February, 2016 Received in revised form 19th March, 2016 Accepted 25th April, 2016 Published online 28th May, 2016

Keywords:

unitary addition Cayley graphs, unitary Cayley graphs, domination number, double domination number Let $(\Gamma, *)$ be a finite group and e be its identity. Let A be a generating set of Γ such that e A and $a^{-1} \in A$ for all $a \in A$. The Cayley graph is defined by G = (V(G), E(G)), where $V(G) = \Gamma$ and $E(G)=\{(x, x^*a) \mid x \in V(G), a \in A\}$, denoted by $Cay(\Gamma, A)$. For a positive integer n > 1, the unitary addition Cayley graph G_n is the graph whose vertex set is Z_n , the integers modulo n and if U_n denotes the set of all units of the ring Z_n , then two vertices a, b are adjacent if and only if $a + b \in U_n$. In this paper, we attempt to find the *double domination number* of the unitary addition Cayley graphs G_n for some n.

Copyright © **Cristopher John S. Rosero, 2016.** This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Let G = (V(G), E(G)) be a graph with vertex set V =V(G) and edge set E=E(G). The number of vertices |V(G)| of a graph G is called the *order of G*. The *open neighborhood* $N(v)=N_G(v)$ of a vertex v consists of the vertices adjacent to v and $d(v) = d_G(v) =$ |N(v)| is the degree of v. The *closed neighborhood* of a vertex v $\in V$ is the set $N[v] = N_G[v] = N(v) \cup \{v\}$. A *regular graph* is a graph whose vertices have all the same degree. If d(x) = r for all $x \in V(G)$, we call *G r*-*regular* and if $d(x) \in \{r, r + 1\}$ we say that *G* is (r_1, r_2) - *semiregular*. The graph definitions, terminologies, and notations, unless otherwise indicated, are taken from the books by Harary in [7] and by Chartrand and Lesniak in [2].

A subset *S* of *V*(*G*) is a *dominating set* in *G* if $N_G[S] = S$ $N_G(S) = V(G)$ where $N_G(S) = \{v \in V(G) : xv \in E(G) \text{ for some } x \in S\}$. Equivalently, a subset *S* of *V*(*G*) is a dominating set in *G* if for every $v \in V(G)$. S, there exists $x \in S$ such that $xv \in E(G)$. Furthermore, the minimum cardinality of a dominating set in *G*, denoted by $\gamma(G)$, is the *domination number* of *G*.

Let G = (V(G), E(G)) be a graph with no isolated vertices. A subset *S* of V(G) is a *double dominating set* of G if S dominates every vertex of G at least twice. The *double domination number* of G, denoted by $\gamma_{x2}(G)$, is the minimum cardinality of a double dominating set of G.

Let Γ be a finite group with *e* as the identity. A generating set of the group Γ is a subset A such that every element of Γ can be expressed as the product of finitely many elements of A. Assume that e A and $a \in A$ implies $a^{-1} \in A$. The *Cayley* graph G = (V,E), where V(G) = Γ and E(G)={ (x,x*a) : x \in V(G), $a \in A$, and it is denoted by Cay(Γ ,A). For any positive integer n, let Z_n denotes the additive cyclic group of integers modulo *n*. If we represent the elements of Z_n by $0, 1, \ldots, n-1$, then $U_n = \{ a \in Z_n : gcd(a, n) = 1 \}$ is a subset of Z_n of order $\varphi(n)$, where $\varphi(n)$ is the Euler's φ function. The Cayley graph $Cay(Z_n, U_n)$ is known as unitary Cayley graph. Hence, the unitary Cayley graph X_n is the graph whose vertex set is Z_n , the integers modulo n and if U_n denotes set of all units of the ring Z_n , then two vertices *a* and *b* are adjacent if and only if *a* $b \in U_n$. The unitary Cayley graph X_n is also defined as, $X_n =$ $Cay(Z_n, U_n)$ [1].

For a positive integer n > 1, the *unitary addition Cayley graph* $G_n = \operatorname{Cay}^+(Z_n, U_n)$ is the graph whose vertex set is $Z_n = \{0, 1, 2, ..., n-1\}$ and the edge set $\operatorname{E}(G_n) = \{ab : a, b \in Z_n, a + b \in U_n\}$ where $U_n = \{a \in Z_n : gcd(a, n) = 1\}$ [3]. The graph G_n is regular if *n* is even and semi regular if *n* is odd [1].

In this paper, we attempt to find the double domination number of the Unitary Addition Cayley graphs G_n for some n.

^{*}Corresponding author: Cristopher John S. Rosero

Mathematics Department, Cebu Normal University, Cebu City, Cebu, Philippines

PRELIMINARIES

- *Theorem 2.1* [6] For any graph G, γ_{x2} (G) $\leq n$.
- **Theorem 2.2** [5] For a cycle C_p with p vertices,

$$\gamma_{x2}(C_p) = \frac{2n}{3} \; .$$

Let $X_n = Cay(Z_n, U_n)$ be a unitary Cayley graph.

Theorem 2.3 [4] X_n is $\varphi(n)$ - regular for all n.

- *Theorem 2.4* [8] X_n , n \ge 2, is bipartite if and only if *n* is even.
- **Theorem 2.5** [1] The unitary addition Cayley graph G_n is connected for all n.
- **Theorem 2.6** [1] The unitary addition Cayley graph G_n is isomorphic to the unitary Cayley graph X_n if and only if n is even.

DOUBLE DOMINATION NUMBER IN UNITARY ADDITION CAYLEY GRAPHS

We now give some results of the double domination number in the Unitary Addition Cayley graphs G_n for some n.

Theorem 3.1 Let *n* be prime such that $n \ge 3$. Then $\gamma_{x2}(G_n) = 3$.

Proof: Suppose *n* is prime. Let *v* be a vertex of the unitary addition Cayley graph G_n . Since $|U_n| = \varphi(n)$, let $U_n = \{1, v_2, ..., v_{\varphi(n)-1}, v_{\varphi(n)}\}$. By the definition of unitary addition Cayley graph, $0 \in V(G_n)$ is adjacent to a vertex $v \in V(G_n)$ if and only if (0 + v, n) = I. This implies that (v, n) = I. That means, $v \in U_n$. Hence, $d(0) = \varphi(n)$. Since *n* is prime, then d(0) = n-1 which implies that 0 is adjacent to any vertex $v \in V(G_n)$.

Now, let $DD \subseteq V(G_n)$ be a double dominating set of G_n and $\theta \in DD$. Consider $1 \in V(G_n)$. Since *n* is prime, then 1 is adjacent to any $u \in V(G_n)$ except *n*-1 since 1 + (n-1) U_n. If we let $1 \in DD$, then DD dominates every vertex of G_n at least twice except *n*-1 $\in V(G_n)$. Hence $DD = \{0, 1, n-1\}$ and is a minimum double dominating set of G_n . Therefore, $\gamma_{x2}(G_n) = |DD| = 3$.

Theorem 3.2 Let *n* be an even integer such that $\varphi(n)=2$. Then $\gamma_{x2}(G_n) = \frac{2n}{3}$.

Proof: Suppose $\varphi(n)=2$. Then $|U_n|=2$. Since *n* is even, then G_n is isomorphic to the Unitary Cayley graph X_n from Theorem 2.6. Hence, G_n is 2-regular by Theorem 2.3. Since G_n is connected for all *n* by Theorem 2.5, we must have $G_n - C_n$, a cycle with *n* vertices. Therefore, by Theorem 2.2,

$$\gamma_{x2}(G_n) = \frac{2n}{3}$$

Theorem 3.3 If n is an integer such that $n = 2^r$, r > 2, then $\gamma_{x2}(G_n) = 4$.

Proof: Let $n = 2^r$, r > 2. Then U_n consists all the odd vertices of Z_n . Since *n* is even, then no two even labeled vertices are adjacent. This implies that even labeled vertices and odd labeled vertices form a bipartition of the vertex set. Since *n* is even, then G_n is $\varphi(n)$ -regular by Theorem 2.6 and Theorem 2.3. Let $v \in V(G_n)$. Then $deg(v) = \varphi(n) = \varphi(2^r) = 2^r - 2^{r-1} = \frac{n}{2}$.

Now let *DD* be a double dominating set of G_n and v_1 , $v_2 \in DD$. Without loss of generality, let v_1 and v_2 be even labeled vertices of G_n . Then v_1 and v_2 are adjacent to every odd vertex of G_n . Similarly, if we let v_3 and v_4 be elements of *DD* such that v_3 and v_4 are odd labeled vertices, then v_3 and v_4 are adjacent to every even labeled vertices of G_n . Hence, DD = $\{v_1, v_2, v_3, v_4\}$ is a minimum double dominating set of G_n . Therefore, $\gamma_{x2}(G_n) = |DD| = 4$.

Theorem 3.4 If n = 2p where $p(\geq 5)$ is an odd prime, then $\gamma_{x2}(G_n) = 4$.

Proof: Let n = 2p. Then $|U_n| = \varphi(n) = p$ -1. Since *n* is even, then due to Theorem 2.6 and Theorem 2.4, G_n is bipartite, i.e., even labeled vertices and the odd labeled vertices form a bipartition of the vertex set.

Let *DD* be a double dominating set of G_n . Now, let $v_1 \in DD$ such that v_l is an odd labeled vertex in G_n . Since *n* is even, then $deg(v_1) = p-1$ by Theorem 2.6 and Theorem 2.3. Since the number of even labeled vertices is p, then there exists an even labeled vertex say v_2 , such that $(v_1 + v_2, n) \neq 1$, that is, v_1 and v_2 are not adjacent. Thus, v_1 dominates itself and is adjacent to all even labeled vertices except v_2 . Similarly, we can show that v_2 dominates itself and is adjacent to all odd labeled vertices except v_1 so that $v_2 \in DD$. Now choose $v_3 \in V(G_n)$, such that v_3 is an odd labeled vertex in G_n , to be an element of DD so that v_3 dominates itself, v_2 and other even labeled vertices of G_n except for an even labeled vertex say v4. Hence, DD dominates all the even labeled vertices of G_n at least twice except v_4 . Choose $v_4 \in V(G_n)$ to be an element of *DD*, so that all the even labeled vertices of $V(G_n)$ is dominated by at least two vertices in DD.

Note that, since v_4 is an even labeled vertex, then v_4 dominates itself and is adjacent to all odd labeled vertices except v_3 . In the same manner, *DD* dominates all the odd labeled vertices of $V(G_n)$ at least twice.

Thus, $DD = \{v_1, v_2, v_3, v_4\}$ and DD is a minimum double dominating set of G_n . Therefore, $\gamma_{x2}(G_n) = |DD| = 4$.

References

- 1. Deepa Sinha, Pravin Garg and Anjali Singh. Some Properties of Unitary Addition Cayley Graphs. Notes on Number Theory and Discreet Mathematics, 17 (2011), 3, 49-59, 2011.
- 2. Chartrand G., Lesniak L.. *Graphs and Digraphs*, 3rd ed., Chapman and Hall/CRC, 1996.
- 3. Naveen Palanivel and Chithra, A.V. Some Structural Properties of Unitary Addition Cayley Graphs. International Journal of Computer Applications (0975-8887) Volume 121-No.17, July 2015.
- 4. Megan Boggess, Tifanny Jackson-Henderson, Isidora Jimenez, and Rachel Karpman. *The Structure of Unitary Cayley Graphs*. SUMSRI Journal, 2008.
- 5. F. Harary and T.W. Haynes. *Double Domination in Graphs*. Ars combin. 55, 201-213(2000).

- 6. T.W. Haynes, S.T. Hedetniemi and P.J. Slater. *Fundamentals of Domination in Graphs.* Marcel Dekker, Inc., New York, (1997).
- 7. Harary, Frank. *Graph Theory*. Massachusetts: Addison-Wesley Publication Company, Inc. 1972.
- 8. Dejter, I. J., and Giudici, R. E. *On unitary Cayley graphs*. J. Combin. Math. Combin. Comput. 18 (1995), 121-124.

How to cite this article:

Cristopher John S. Rosero.2016, Double Domination Number in the Unitary Addition Cayley Graphs. Int J Recent Sci Res. 7(5), pp. 10902-10904.