

International Journal Of

Recent Scientific Research

ISSN: 0976-3031 Volume: 7(4) April -2016

A SYSTEMATIC REVIEW OF EFFICACY OF SHADE MATCHING IN PROSTHODONTICS

Raghunathan J., Ramesh A.S., Prabhu K and Gayathri R

THE OFFICIAL PUBLICATION OF INTERNATIONAL JOURNAL OF RECENT SCIENTIFIC RESEARCH (IJRSR) http://www.recentscientific.com/ recentscientific@gmail.com

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 7, Issue, 4, pp. 9949-9954, April, 2016 International Journal of Recent Scientific Research

Review Article

A SYSTEMATIC REVIEW OF EFFICACY OF SHADE MATCHING IN PROSTHODONTICS

Raghunathan J., Ramesh A.S., Prabhu K and Gayathri R

Department of Prosthodontics and Crown & Bridge Adhiparasakthi Dental College & Hospital Melmaruvathur

ARTICLE INFO

ABSTRACT

Copyright © **Raghunathan J., Ramesh A.S., Prabhu K and Gayathri R., 2016**, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Color is a property of light. Objects have no color of their own; they just reflect a particular wavelength from the color spectrum. For example a blue object absorbsall of the wavelengths, except for blue. The remaining wavelengths enter our eyes and this is what we see¹. The most popular method for describing color is the Munsell system. The three attributes of color in this system are called *Hue, Chroma and* Value¹.

Limitations in materials and techniques may make a perfect shade selection impossible. Shade selection should be approached in a methodical and organized manner¹. Successful shade matching remains one of the most important elements of esthetic success and patient satisfaction². The success of shade matching is determined on the basis of functional and esthetic results³. To achieve esthetics, four basic determinants are required in sequence; viz., position, contour, texture and color. Because it imposes several demands on the artistic abilities of the dentist and the technician, knowledge of the underlying scientific principles of color is essential⁴. Significant advances in dental porcelains, resins, bonding chemistry, and cements have accompanied developments in color measurement optics create a marketplace that is exciting at times to overwhelming⁵.Technology-based systems provide with advantage of natural looking restorations. They include RBG devices, colorimetersand spectrophotometers³. The clinical

focus of color matching in prosthodontics is the beginning and the end, that is, shade selection and evaluation of the final result⁵.

MATERIALS AND METHODS

This topic is reviewed systematically as shown in the flow chart for systematic review

DISCUSSION

This systematic review evaluated 36 studies that comparing the efficacy of different tooth shade-matching protocols, 21 of which compared visual and instrumental shade measurements, 9 studies utilizes only instrumental measurements out of which 4 compared colorimetric and spectrophotometric measurements. Remaining 6 studies utilizes visual measurements includes day light or commercial light.

The samples used in the studies ranged from natural and extracted teeth to shade tabs. These differences likely caused variations in the results. Seventeen of 36 studies focused on the middle third of the tooth, which may not represent the full color gradation of the natural tooth surface. Few studies assessed the whole tooth surface. In some studies, evaluation of the overall color or each third of a tooth (ie, the incisal, middle, and cervical thirds) produced slightly more consistent shade

^{*}Corresponding author: **Raghunathan J**

Department of Prosthodontics and Crown L Bridge Adhiparasakthi Dental College L Hospital Melmaruvathur

matching, but no statistically significant conclusions could be drawn from such assessments.

Of the studies presenting data on precision, 11 reported more precise outcomes using a spectrophotometer, regardless of the sample type, area assessed, or shade matching environment. Assessment of colorimeters with respect to precision and accuracy varied greatly among the studies. In contrast, Yilmaz and Karagaclioglu indicated that even a visual measuring method was more precise than colorimeters. Some studies involving comparison of digital imaging assessment with conventional visual measurements. They reported higher accuracy with the digital imaging method. Schropp found no statistical differences between visual and digital measurements.

Table 1 Search strategy

Study parameters	Search No.	Search terms	Results
Pubmed & Embase & Google Scholar	1.	(shade matching) OR shade selection	497
	2.	((shade evaluating) OR shade assessing) OR shade measuring	217
	3.	((teeth) OR tooth) OR dental	521281
	4.	1 AND 3	354
	5.	2 AND 3	93
	6.	4 OR 5	425

Table 2 Inclusion and Exclusion criteria

Study parameter	Inclusion criteria	Exclusion criteria		
Study design	 Systematic Review articles. Meta analysis. Randomized control studies. Cohort studies. Case Control studies. 	 Case reports. Case series. Letter to Editor. Book reviews. Professional communications. Systemic reviews. Animal studies. 		
Publication date	From last 10 years to August 30, 2015	ongoing trials, published before 10		
Language Conflict of interest	English Free of conflicts of interest	Non-English Comparing specific brands of instruments		

Table 3 Selection process

Assessment	Exclusion criteria				
Titles	Irrelevant topics (eg, caries, non-vital, fracture)				
Abstracts	Irrelevant study design (case series, case reports, animal studies)				
Full text	No applicable data or unretrievable				

The use of a spectrophotometer that evaluates the color of the entire tooth surface should be recommended when highly esthetic restorations are required. A colorimeter may be useful in shade matching, but it is recommended to combine colorimetric measurements with visual measurement. The use of digital imaging for shade analysis can improve communication between clinicians and technicians. The authors recommended digital imaging as an auxiliary method to visual measurement when a spectrophotometer or colorimeter is not available. Visual shade matching is subjective and inconsistent. However, when exact color replication is unnecessary, visual assessment should be used because of its convenience and low cost.

Summary

Visual color determination by comparing the teeth to a shade guide has been the most often used method in dentistry. Some authors concluded that human eye is efficient in detecting even small differences, while other authors have commented that the human evaluation of tooth shade is unreliable³².

Visual tooth shade selection is characterized by high intraexaminer variability, due to the numerous subjective factors that affect color selection. Electronic shade selection devices have the potential for more accurate and reliable selection of a tooth color, since they are not influenced by the significant parameters in visual selection, such as illumination and operator variability³³.Media emphasis on an "esthetic standard" is probably responsible for driving the most recent advances in dental imaging and shade matching. Although we tend to focus on color matching, it is an appearance match that we are after, so the optical properties of translucency, light scattering, surface texture, and gloss and the basic principles of esthetics, including tooth size and proportion, symmetry, outline form, and overall harmony and just as important, if not more so, to a successful restorative match⁵.

Spectrophotometric shade analysis seems to be more reproducible than the visual shade determination³⁴. The ability of dental students to match shades was significantly better with a correcting light source than under natural light³⁵. With more research and development it should be possible to achieve a higher percentage of successful matches than the approximately 50⁰ /₀ experiences today, but even with the acceleration of progress in color matching technology, the success of a restorative effort remains dependent on adequate tooth preparation, tissue management, and treatment planning⁵. The color of the all-ceramic specimens with different veneering porcelain shades is influenced by repeated firings and it should be considered during shade selection and fabrication³⁶.

Assessment of the Articles

64 1	G	Method	D. I.	Sample			
Study	Setting		Device	TYPE	NÔ.	AREA	Assessment
		Visual	Vita A	Natural light			T 1
Francis M.Curd et	Invitro	-natural light	Vita B	Commer-cial	216	Labial	Light correcting device is better
<i>ai</i> 2000		-commercial light	Vita C	light			than natural light
Ji-Hoon Park et al ¹⁴	Invitro	Visual	Vita lumin	Shade tabs	2	Middle 3rd	Influence of illuminants on shade
2006		-shade tabs	Chromoscop				matching should be considered
D I Z 1		17. 1	Vita lumin	NT . 1			
E.Klemetti <i>et al</i>	Invivo	Visual	Vita 3D	Natural	4	Middle 3rd	Digital colorimeter may be in
2006		Colorimeter	Procera	teeth			advantage over traditional method
			Nilcon D100				Commercial SLP digital compre
Alvin G Wee at al^{21}			Canon D60				should combined with appropriate
2006	Invitro	Digital camera	Sigma SD9	Shade tab	65	Middle 3rd	calibration & can use in color
2000			Signa SD7				replication
22			Easyshade				Spectroshade micro machine
R.Khurana <i>et al²⁵</i>	Invivo	Spectrophotometer	Shade vision Spectroshade	Natural teeth	6	Labial	provided the most repeatable
2007		Colorimeter	Shade (Iston Speed Shade	i taturur tootii	0	Buolui	measurements
Foteini V.							
Derdilopoulou et	T	Visual	Chromascop	NI-41 44h	2 750	T -1-1-1	Spectrophotometric shade analysis
al ³⁴ 2007	INVIVO	Spectrophotometer	Spectroshade	Natural teeth	3,738	Labiai	seems to be more reproducible
			Easyshade				
Alma Dozic <i>et al</i> ²⁴	Invivo	Spectrophotometer	Shadescan	Extracted			Easyshade&Ikam systems were
2007	Invitro	Colorimeter	Ikam	Natural	25	Middle 3rd	most reliable
			Shadeeye	teeth			
			IdentacolorII				
O L i at $al^{10} 2007$	Invivo	Visual	Vintage halo	Natural teeth	20	Middle 3rd	ShadeEye NCC chroma meter
Q.LI et al 2007	IIIVIVO	Spectroradiometer	ShadeeyeNCC	Natural teetii	20	Wildule 31d	make better results
RadeD.Paravina et		Visual	Fasyshade	Natural			Clustering & Optimization
$al^{15} 2007$	Invivo	spectrophotometer	Vita classical	teeth	1064	Middle 3rd	enabled better representation than
		spectrophotometer	v na clussical	teetii			existing dental shade guide
Stephen J.Chu <i>et al</i> ⁹	•	Visual	Digital camera			Incisal 3rd	Successful shade taking involves
2007	Invitro	Instrumental	Spectrophotometer	Shade tab	-	Middle3rdG	technology based systems, shade
			Vit- C			ingival3rd	tabs, & reference photography
John D Do Cilvo at		Vienel	Vita C			All 2nds of	Creation botomator had a
John D.Da Shva ei al^{28} 2008	Invivo	v Isual Spectrophotometer	Vita 5D	Natural	26	All Sius Of	significantly better color metch
<i>ui</i> 2008		spectrophotometer	Crystaleve	teeth	50	surface	significantly better color match
Lars Schoropp ²⁵		Visual	Vita 3D			Labial	Digital photographs & computer
2008	Model	DI	Canon EOS	Shade tabs	12	Surface	software was more reliable
 				Vita Shade	10		
GozdeCelik <i>et al</i> ³⁰	Invitro	Spectrophotometer	Easyshade	tab		Middle 3rd	Color of porcelain shades
2008		* *		ivocular	10		influenced by repeated firings
Soungyookim			Shade vision				
Pusateri <i>et al</i> ²⁶ 2009	Invitro	Instrumental	Spectroshade	model	3	Middle3rd	Vita Easyshadehad both reliability
rusaterrerui 2007	mviuo	mstrumentar	Easyshade	model	5	Wilddie5fd	& accuracy
			Shadescan				
Andrej M.Kielbassa	• •	Visual	Chromascop	Extracted	•		Spectrophotometric assessment
<i>et al</i> ²² 2009	Invitro	Spectrophotometer	Spectroshade	natural	288	Middle3rd	was more reproducible &
		1 1	1	teeth			objective

It can be concluded that the perception of color difference seems to be learned trait. When compared to a lay person, dental surgeons are more acute in perceiving color changes and do not accept the color difference between teeth to a higher degree³⁷.

Besides visual assessment with a shade guide, tooth color can be measured with colorimetry, spectrophotometry, and digital cameras²⁴. The theoretical benefits of using the spectrophotometer are that the measurements are not subject to human biases, subjectiveness, vision deficiencies, or an unsteady light source. It also allows easier communication between individuals¹⁶. However, the final color matching may be affected by the combination of ceramic color and thickness, together with the luting agent and the color of the underlying dental structure¹⁶. Shade matching devices could help the clinician and technician achieve a better shade choice. The combination of visual shade analysis and digital shade measurement together lies in the precise predictability of the miscibility of shades³⁸.

Commercially available electronic systems fortooth color measurements show different levels of accuracy and precision²⁴. Digital imaging has great potential for color measurement in terms of accuracy². There was significant difference of *E* between natural teeth and crowns constructed from different materials and 0.8, 1.2, and 1.5 mm ceramic thicknesses or combinations of both.¹⁶. At the highest 1.5 mm crown thickness, there was no significant difference between natural teeth and crowns constructed from different material¹⁶. The optical behavior of ceramic materials differs from system to system.

Assessment	of	the	articles	
1 1 3 3 C 3 5 HICHL	UI.	unc	articics	

PanagiotisE.Lagouv ardos <i>et al</i> ³³ 2009	Invitro	Colorimeter Spectrophotometer	ShadeEye NCC Easyshade	Extracted natural teeth	31	Middle3rd	Lightness & shade guide systems affect interdevice reliability
WD Browning <i>et</i> <i>al</i> ³² 2009	Invivo	Visual Spectrophotometer	Vita 3D Easyshade	Natural teeth	95	Middle3rd	Easyshade were more frequently an exact color match
Gabriele Corciolani et al ¹² 2009	Invitro	Visual Spectrophotometer	Vita classical Vita 3D Easyshade	Shade tabs	15	Labial surface	Vita 3D-master tooth guide was found to be more reliable than vita classical guide
Ahmad Judeh <i>et al</i> ³⁸ 2009	Model Invivo	Visual Spectrophotometer	Vita C Easyshade Vita lumin	Shadetab Natural teeth	9 9	Middle3rd	Spectrophotometer was more likely to match the shade than the visual method
Q.Li <i>et al</i> ¹⁷ 2009	Invivo	Visual Colorimeter	Vita luliili Vita 3D Shofu NCC	Natural teeth	60	Middle 3rd	Visual shade matching could not achieve a clinically compatible shade matching result
N.Corcodel <i>et al</i> ⁷ 2009	Invivo	Visual	Natural daylight Daylight lamp	Shade tabs	26	Labial surface	Daylight lamp helps to standardize light conditions
BurakYilmas <i>et al</i> ²⁰ 2010	Invitro model	Visual Colorimeter	Vitapan classical ShadeEye NCC	Ceramic specimen	25	Middle 3rd	Visual shade determination yielded better color replication
Aki yoshida <i>et al</i> ³⁰ 2010	Invitro	Spectrophotometer	Crystaleye	Natural teeth	1	Incisal3rd Middle3rd Cervical3rd	Spectrophotometer accurately communicate important information about shade of tooth
N.Coecodel <i>et al</i> ¹¹ 2010	Invivo	Visual	Visual	Linear vita3D Original vita 3D Shade tab	30	Labial surface	Regarding performance & time needed in shade matching was not different with Linear or 3D guide
Vimal K.Sikri ⁴ 2010	Invitro	Visual Instrumental	Visual Instrumental	-	-	-	Concept of color is essential for achieving good esthetics
Karl Martin Lehmann <i>et al</i> ²⁹ 2011	Invivo	Spectrophotometer Colorimeter	Easyshade Shade pilot Shade vision	Natural teeth	15	Cervical Body Incisal	Clinically acceptable intra-device repeatability for all tooth regions when using same color measuring device
Mohammed Shammas <i>et al</i> ¹ 2011	Invitro	Visual Instrumental	Visual Instrumental	-	-	-	Understanding the science of color & color perception is important
VinayaBhat <i>et al</i> ³ 2011	Invitro	Visual Instrumental	Visual Instrumental	-	-	-	Successful shade taking involves combination of technology, shade tabs & reference photographs
Hui Chen <i>et al</i> ² 2012	Invitro	Visual Spectrophotometer Colorimeter	Visual Spectrophotometer Colorimeter	articles	26	-	Spectrophotometer was the most precise & accurate method for shade matching
K Yuan <i>et al</i> ¹⁸ 2012	Invivo Invitro	Visual Instrumental	Shade pilot Easyshade ShadeEyeNCC	Shade tabs Natural teeth	80 85	Middle 3rd	Combination of instrumental & visual shade matching is recommended
Shobha Rodrigues et al ⁸ 2012	Invivo	Visual	Vita lumin Chromascop Vita 3D	Natural teeth	800	Labial surface	Vita 3D master had the greatest variety of shades
P.B.Ozat <i>et al</i> ³⁹ 2013	Invivo	Visual	Vita 3D Easyshade	Natural teeth	54	Labial surface	Dentists can match clinically acceptable shades in visual method
P.Magne <i>et al</i> ¹³ 2013	Invitro	Visual Spectrophotometer	Vita Miris2 Easyshade	Shade tab	2	Labial surface	Prefabricated anatomic dual-laminate shade guide is as efficient as custom shade guide
Motaz Ahmed Ghulman <i>et al</i> ¹⁶ 2013	Invitro	Spectrophotometer	Easyshade	Extracted natural teeth	90	Middle 3rd	Increasing the thickness of fabricated crowns enhances color match
Jian Wang <i>et al</i> ²⁷ 2014	Invitro	Visual Instrumental	Vita 3D Crystaleye	Shade tabs	29	Labial surface	Computer color matching system is accurate and effective for reproducing tooth shades
TeutaPustina- Krasniqi <i>et al</i> ¹⁹ 2015	Invivo	Visual Spectrophotometer	3D mastershade Easyshade	Natural teeth	82	Middle3rd	Combination of visual & digital shade measurement should be used

Knowledge of the optical properties of different thicknesses of available ceramic systems enables the clinician to make appropriate choices when faced with various esthetic challenges¹⁶. Consistency and reliability of visual shade matching are questioned, and instrumental shade-matching methods such as using a spectrophotometer are claimed to provide the most precise and accurateshade-matching outcomes,

where a review of the related literature suggests that visual shade matching as the conventional technique to determine tooth shade should be used in combination with instrumental methods whenever possible, as they complement each other and can lead towards predictable aesthetic outcome .It can be concluded that visual shade matching is still an inevitable method and when reliability and repeatability of commercially available shade tabs or shade-matching instruments are considered, such features of human eye should also be $judged^{39}$.

CONCLUSION

This systematic review evaluated the efficacy of different tooth shade-matching methods. Shade matching using a spectrophotometer is the most precise and accurate. Although visual shade matching is inconsistent, this method is not necessarily inferior to colorimetric measurements in terms of precision. Digital imaging has great potential for color measurements in terms of accuracy. In addition, controlled standards are required to regulate shade-matching procedures and comparison of different shade-matching outcomes. Thus successful shade matching involves technology based systems, shade tabs, and reference photography.

References

- 1. Mohammed Shammas, Rama Krishna Alla. Color and Shade Matching in Dentistry. Trends Biomater Artif Organ 2011;25(4):172-175
- 2. Hui Chen, Jing Haung, Xian Dong, Jielei Qian, Jiajing He, Xinhua Qu, Eryi Lu. A systemic review of visual and instrumental measurements for tooth shade matching. Quintessence Int 2012;43(8):649-59
- VinayaBhat, Krishna Prasad D, SonaliSood, ArunaBhat. Role of colors in prosthodontics: Application of color science in restorative dentistry. *Indian Journal of Dental Research*. 2011;22(6):804-809
- 4. Vimal K Sikri. Color : Implications in dentistry .J Conserv Dent 2010;13:249-55
- 5. Jane D. Brewer, Alvin Wee, Robert Seghi. Advances in color matching. Dent Clin N Am.2004;48:341-358s
- E.Klemetti, A.M.Matela, P.Haag, M.Kononen. Shade selection performed by novice dental professionals and colorimeter. *Journal of oral rehabilitation* 2006; 33:31-35
- NicoletaCorcodel, Peter Rammelsberg, Ovidiu Moldovan, Jens Dreyhaupt, Alexander J. Hassel. Effect of external light conditions during matching of tooth color: An intra-individual comparison. Int J Prosthodont 2009;22:75-77
- Shoba Rodrigues, S.RamanandShetty. An evaluation of shade differences between natural anterior teeth in different age groups and gender using commercially available shade guides. J Indian ProsthodontSoc Oct-Dec 2012;12(4):222-230
- 9. Stephen J.ChuClinical.steps to predictable color management in aesthetic restorative dentistry. Dent Clin N Am 2007;51:473-485
- 10. Q.Li, Y.N.Wang. Comparison of shade matching by visual observation and an intraoral dental colorimeter. *Journal of Oral Rehabilitation* 2007;34:848–854
- N.Corcodel, P.Rammelsberg, H.Jakstat, O.Moldovan, S.Schwarz, A.J. Hassel. The linear shade guide design of Vita 3D-master performs as well as the original design of the Vita 3D-master. *Journal of Oral Rehabilitation* 2010;37:860–865
- Gabriele Corciolani, Alessandro Vichi, Cecilia Goracci, Marco Ferrari. Color correspondence of a ceramic system in two different shade guides. Journal of dentistry 2009; 37:98-101

- P.Magne, G.Bruzi, A.O.Carvalho, M.Giannini, H.P.Maia. Evaluation of an anatomic dual-laminate composite resin shade guide. *Journal of Dentistry* 2013;e80-e86
- 14. Ji-Hoon Park, Yong-Keun Lee, Bum-Soon Lim. Influence of illuminants on the color distribution of shade guides J Prosthet Dent 2006;96:402-11
- Rade D. Paravina, GoranMajkic, Francisco H. Imai, John M. Powers. Optimization of Tooth Color and Shade Guide Design J Prosthodont 2007;16:269-276
- Motaz Ahmed Ghulman, Mohamed AbdelmageedAwad. Color Variation between Matched and Fabricated Shades of Different Ceramics. *Journal of Prosthodontics* 2013;22:472–477
- Q.Li, H.Yu, N.Wang. In vivo spectroradiometric evaluation of colour matching errors among five shade guides. *Journal of Oral Rehabilitation* 2009;36:65–70
- K.Yuan, X.Sun, F.Wang, H.Wang, J.Chen. Invitro and invivo evaluations of three computer-aided shade matching instruments. Operative Dentistry 2012;37(3):219-227
- TentaPustina-Krasniqi, ArianaBytyci, TeutaBicaj, EnisAhmedi, Linda Dula, Zana Lila, ArlindaDragusha, NexhmijeAjeti. The Color of Natural Teeth Investigated by Visual Perception and Spectrophotometer. Open Journal of Stomatology 2015;5:26-35
- 20. BurakYilmaz, LaleKaraagaclioglu. Invitro evaluation of color replication of metal ceramic specimens using visual and instrumental color determinations. J Prosthet Dent 2010;105:21-27
- Alvin G. Wee, Delwin T. Lindsey, ShanglunKuo, William M. Johnston. Color accuracy of commercial digital cameras for use in dentistry. Dent Mater 2006; 22(6):553–559
- 22. Andrej M. Kielbassa, Nils J. Beheim-Schwarzbach, Konrad Neumann, Catharina Zantner. Invitro comparison of visual and computer-aided pre- and posttooth shade determination using various home bleaching procedures. JProsthet Dent 2009;101:92-100
- 23. R.Khurana, C.J.Tredwin, M.Weisbloom, D.R.Moles. A clinical evaluation of the individual repeatability of three commercially available color measuring devices. Br Dent J 2007;203(12):675-680
- 24. Alma Dozic, CornelisJ.Kleverlaan, Ahmed EL-Zohairy, Albert J.Feilzer, Ghazal Khashayar. Performance of Five Commercially Available Tooth Color-Measuring Devices. J Prosthodont 2007;16:93-100
- 25. Lars Schropp. Shade Matching Assisted by Digital Photography and Computer Software.Journal of Prosthodontics 2009;18:235–241
- Seungyee Kim-Pusateri, Jane D.Brewer, Elaine L.Davis, Alvin G.Wee. Reliability and accuracy of four dental shade-matching devices J Prosthet Dent 2009;101:193-199
- Jian Wang, Jin Jin, Mindy Gil, Alison Seliger, John D.Da Silva, Shigemi Ishikawa-Nagai. Assessing the accuracy of computer color matching with a new dental porcelain shade system. J Prosthet Dent 2014;111:247-253
- 28. John D.DaSilva, Sang E.Park, Hans-Peter Weber, Shigemi Ishikawa-Nagai. Clinical performance of a

newly developed spectrophotometric system on tooth color reproduction. J Prosthet Dent 2008;99:361-368

- 29. Karl Martin Lehmann, Alessandro Devigus, Christopher Igiel, Stefan Wentaschek, Mehdi Sattari, Herbert Scheller. Repeatability of color measuring devices. The *European Journal of Esthetic Dentistry* 2011;6(4):428-435
- Aki Yoshida, Lloyd Miller, John D. Da Silva, Shigemi Ishikawa-Nagai. Spectrophotometric Analysis of Tooth Color Reproduction on Anterior All-Ceramic Crowns: Part 2: Color Reproduction and Its Transfer from In Vitro to In Vivo. J EsthetRestor Dent 2010;22(1):53–65
- 31. Gabriele Corcioloni. Study of dental color matching, color selection and color reproduction. 2010
- WD Browning, DC Chan, JS Blalock, MG Brackett. A comparison of human raters and an intra-oral spectrophotometer. Operative Dentistry 2009;34(3):337-343
- 33. Panagiotis E. Lagouvardos, Aggeliki G. Fougia, Sofia A. Diamantopoulou, Gregory L. Polyzois. Repeatability and interdevice reliability of two portable color selection devices in matching and measuring tooth color. J Prosthet Dent 2009;101:45-45

- Foteini V. Derdilopoulou, Catharina Zantner, Konrad Neumann, Andrej M. Kielbassa. Evaluation of visual and spectrophotometric shade analyses: A clinical comparison of 3,758 teeth. Int J prosthodont 2007; 20:414-416
- 35. Francis M. Curd, T. Roma Jasinevicius, Angela Graves, Viktoria Cox, AvishaiSadan. Comparison of the shade matching ability of dental students using two light sources. J Prosthet Dent 2006;96:391-6
- 36. GozdeCelik, BulentUludag, AslihanUsumez, VolkanSahin, OzgeOzturk, GurkanGoktug. The effect of repeated firings on the color of an all-ceramic system with two different veneering porcelain shades. JProsthet Dent 2008;99:203-208
- 37. A.S.Ramesh, Aruna Sharma, K.Rijesh, R.Prakash, Lakshmi Devi, Edilbert Raja. Assessment of perceptibility and acceptability of color variations between matched teeth among trainee dentist and lay person. *Journal of Pharmacy and Bioallied Sciences* August 2015;Vol 7:Supplement 2
- Ahmad Judeh, Ahmed Al-Wahadni. A comparison between conventional visual and spectrophotometric methods for shade selection. QuintessenceInt 2009;40(9):e69-e79
- 39. P.B.Ozat, I. Tuncel, E. Eroglu. Repeatability and reliability of human eye in visual shade Selection. *Journal of Oral Rehabilitation* 2013; 40:958-964.

How to cite this article:

Raghunathan J., Ramesh A.S., Prabhu K and Gayathri R.2016, A Systematic Review of Efficacy of Shade Matching In Prosthodontics. *Int J Recent Sci Res.* 7(4), pp. 9949-9954.

