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ARTICLE INFO ABSTRACT

The steady, two dimensional flow of a copper (Cu) - water nanofluid over a permeable a stretching
sheet in the presence of porous medium and Newtonian heating. Using the similarity
transformations, the governing equations have been transformed into a system of ordinary
differential equations. These differential equations are highly nonlinear which cannot be solved
analytically. Therefore, fourth order Runge-Kutta Gill procedure together with shooting technique
has been used for solving it. Numerical results are obtained for the skin-friction coefficient and the
local Nusselt number as well as the velocity and temperature profiles for different values of the
governing parameters, namely, permeability parameter, volume fraction of nanoparticles, conjugate
parameter for Newtonian heating, and Prandtl number.

INTRODUCTION

In recent years, a great deal of interest has been evinced in the
study of mixed convective heat and mass transfer in nanofluids
as it has many industrial importance, specially, in
nanotechnology. Nanofluid is a suspension of solid nano
particles or fibers of diameter 1-100 nm in basic fluids such as
water, oil and ethylene glycol. Nanoparticles are made from
various materials, such as Cu; Ag; Au; Fe; Hg; Ti etc. metals
and non metallic Al2O3, CuO, TiO2, SiO2 etc. (Choi et al.
(2001)). Khan and Pop (2010) investigated the boundary-layer
flow of a nanofluid past a stretching sheet. Sheikholeslami et
al. (2012) investigated the flow and heat transfer of Cu-water
nanofluid between a stretching sheet and a porous surface in a
rotating system. Sharma and Ishak (2014) studied the boundary
layer flow of Cu-water based nanofluid with heat transfer over
a stretching sheet and second order velocity slip flow model is
considered instead of no-slip at the boundary. Lin and Zheng
(2015) investigated the marangoni boundary layer flow and
heat transfer of copper-water nanofluid over a porous medium
disk. Sulochana and Sandeep (2015) investigated the stagnation
point flow and heat transfer behavior of Cu–water nanofluid
towards horizontal and exponentially permeable stretching or
shrinking cylinders in presence of suction  or injection, heat
source and shape of nanoparticles.

In all these studies mentioned above, the Newtonian heating
condition was neglected at the boundary. The situation where
the heat is transported to the convective fluid via a bounding
surface having finite heat capacity is known as Newtonian
heating (or conjugate convective flows). This configuration
occurs in convection flows set up when the bounding surfaces
absorb heat by solar radiation. Merkin (1994) in his pioneering
work studied the free convection boundary layer flow past a
vertical plate with Newtonian heating. He found the asymptotic
solution near the leading edge analytically and the full
solutions along the whole plate for free convection boundary
layer over vertical surfaces numerically. On the other hand, the
Newtonian heating situation occurs in many important
engineering devices, such as heat exchanger and conjugate heat
transfer around fins. Makinde (2013) investigated the
combined effects of viscous dissipation and Newtonian heating
on boundary-layer flow over a flat plate for three types of
water-based nanofluids containing metallic or nonmetallic
nanoparticles such as copper (Cu), alumina (Al2O3), and
titania (TiO2) for a range of nanoparticle volume fractions.
Arpita Jain (2014) studied the chemically reactive boundary
layer flow past an accelerated plate with radiation and
Newtonian heating. Hussanan et al. (2014) investigated the
unsteady boundary layer flow and heat transfer of a Casson
fluid past an oscillating vertical plate with Newtonian heating.
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Afify et al. (2014) studied the slip flow effects, Newtonian
heating, and thermal radiation, two-dimensional
magnetohydrodynamic (MHD) flows and heat transfer past a
permeable stretching sheet. Shehzad et al. (2015) investigated
the two-dimensional boundary layer flow of an incompressible
third grade nanofluid over a stretching surface. Influence of
thermophoresis and Brownian motion is considered in the
presence of Newtonian heating and viscous dissipation. They
concluded that the temperature and thermal boundary layer
thickness are increasing functions of Newtonian heating
parameter and an increase in thermophoresis and Brownian
motion parameters tends to an enhancement in the temperature.
Ramzan and Yousaf (2015) investigated the boundary layer
flow of three-dimensional viscoelastic nanofluid past a bi-
directional stretching sheet with Newtonian heating.

In the present paper, the steady, two dimensional flow of a
copper (Cu)- water nanofluid over a permeable a stretching
sheet in the presence of porous medium and Newtonian heating
is investigated. Using the similarity transformations, the
governing equations have been transformed into a set of
ordinary differential equations, which are nonlinear and cannot
be solved analytically, therefore, bvp4c MATLAB solver has
been used for solving it. The results for velocity and
temperature functions are carried out for the wide range of
important parameters namely; namely, permeability parameter,
solid volume fraction of nanoparticles, conjugate parameter for
Newtonian heating and Prandtl number. The skin friction and
the rate of heat transfer have also been computed.

Mathematical Formulation

Consider the steady, laminar boundary layer flow and heat
transfer of a viscous and incompressible Cu-water nanofluid
over a stretching sheet. In this two-dimensional model,
rectangular Cartesian coordinates (x, y) are used, in which the
x- and y-axes are taken as the coordinates parallel to the plate
and normal to it, respectively, and the fluid occupies the region
y≥0. Further, u and v are the velocity components along the x-
and y- directions, respectively. The thermo-physical properties
of the nanofluid are given in table-1.

The physical model and coordinate system of this problem is
shown in Fig. A. We assume that the wall is subjected to a
Newtonian heating of the form proposed by Merkin (1994).

Figure A Schematic diagram of the physical problem

Under the above assumptions, the Partial differential equations
and the corresponding boundary conditions govern the problem
are given by:
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where u and v are the velocity components along the x- and y-
axes, respectively, sh is the convective heat transfer coefficient,

T is the temperature of the nanofluid, T∞ is the ambient
temperature, μnf is the viscosity of the nanofluid, αnf is the
thermal diffusivity of the nanofluid and ρnf is the density of the
nanofluid, which are given by (Oztop and Abu-Nada (2008))
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Here, ϕ is the nanoparticle volume fraction, (ρCp)nf is the heat
capacity of the nanofluid, knf is the thermal conductivity of the
nanofluid, kf and ks are the thermal conductivities of the fluid
and of the solid fractions, respectively, and ρf and ρs are the
densities of the fluid and of the solid fractions, respectively. It
should be mentioned that the use of the above expression for knf

is restricted to spherical nanoparticles where it does not account
for other shapes of nanoparticles (Abu-Nada (2008)). Also, the
viscosity of the nanofluid μnf has been approximated by
Brinkman (1952) as viscosity of a base fluid μf containing dilute
suspension of fine spherical particles.

Table 1 Thermo Physical properties of water and
nanoparticles [Oztop & Abu-Nada (2008)]

Physical properties Water/base fluid Cu (copper)
(kg/m3)
(J/kg K)

k(w/m K)
Φ

997.1
4179
0.613

0.0

8933
385
401
0.05
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The governing Eqs. (2) - (3) subject to the boundary conditions
(4) can be expressed in a simpler form by introducing the
following transformation:
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where η is the similarity variable and ψ is the stream function
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satisfies Eq. (1). Employing the similarity variables (6), Eqs.
(2) and (3) reduce to the following ordinary differential
equations:
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The boundary conditions become,
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Here primes denote differentiation with respect to η.

Pr is the Prandtl number, and γ is the convective parameter
defined respectively as
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The physical quantities of interest are the skin friction
coefficient Cf and the local Nusselt number Nux, which are
defined as
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where the surface shear stress τw and the surface heat flux qw

are given by
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with μnf and knf being the dynamic viscosity and thermal
conductivity of the nanofluids, respectively. Using the
similarity variables (6), we obtain
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where Rex
f

U x


 is the local Reynolds number.

Solution of The Problem

For solving Eqs. 7 – 9, a step by step integration method i.e.
Runge–Kutta method has been applied. For carrying in the
numerical integration, the equations are reduced to a set of first
order differential equation. For performing this we make the
following substitutions:
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In order to carry out the step by step integration of Eqs.
Refspseqn 7-9, Gills procedures as given in Ralston and Wilf
(1960) have been used. To start the integration it is necessary to
provide all the values of 1 2 3 4, , ,y y y y at 0  from which

point, the forward integration has been carried out but from the
boundary conditions it is seen that the values of 3 5,y y are not

known. So we are to provide such values of 3 5,y y along with

the known values of the other function at 0  as would

satisfy the boundary conditions as  10   to a

prescribed accuracy after step by step integrations are
performed. Since the values of 3 5,y y which are supplied are

merely rough values, some corrections have to be made in these
values in order that the boundary conditions to   are

satisfied. These corrections in the values of 3 5,y y are taken

care of by a self-iterative procedure which can for convenience
be called ‘‘Corrective procedure’’. This procedure has been
taken care of by the software which has been used to
implement R–K method with shooting technique.

As regards the error, local error for the 4th order R–K method

is  5O h ; the global error would be  4O h . The method is

computationally more efficient than the other methods. In our
work, the step size 0.01h  . Therefore, the accuracy of
computation and the convergence criteria are evident. By
reducing the step size better result is not expected due to more
computational steps vis-a` -vis accumulation of error.
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RESULTS AND DISCUSSION

The governing equations (7) - (8) subject to the boundary
conditions (9) are integrated as described in section 3. In order
to get a clear insight of the physical problem, the velocity and
temperature have been discussed by assigning numerical values
to the parameters encountered in the problem.

Figures 1 & 2 establishes the different values of permeability of
the porous medium parameter (Kp) on velocity and temperature
profiles, respectively. The values of K is taken to be Kp = 0.5,
1, 1.5, 2 and the other parameters are fixed as ϕ = 0.2, γ = 0.3
and Pr = 6.2. It is noticed that, with the hype in the values of K
from 0.5 to 2.0 then the velocity increases consequently
increases the thickness of momentum boundary layer but the
temperature distribution of the fluid decreases. The reason for
this, the porous medium obstructs the fluid to move freely
through the boundary layer. This leads to reduce in the
thickness of thermal boundary layer.

Figure 3 & 4 show the effect of the solid volume fraction of
nanoparticles (ϕ) on velocity and temperature profiles and the
other parameters are fixed as Kp = 2, γ = 0.3 and Pr = 6.2. We
observe that the velocity decreases whereas temperature
increases with the increases the values of solid volume fraction
of nanoparticles (ϕ). The variation of the temperature profiles
with conjugate parameter for Newtonian heating (γ) is shown in
Figures 5 respectively and the other parameters are fixed as ϕ =
0.2, Kp = 2 and Pr = 6.2.  It is observed that the temperature
distribution increases with an increasing the values conjugate
parameter for Newtonian heating (γ).

Figure 6 displays the temperature profiles θ(η) for all values of
Pr = 2, 3, 4 and 5 and the other parameters are fixed as ϕ = 0.2,
γ = 0.3 and Kp = 2. It is found that as Pr increases, the
temperature profiles decrease. It is also shown from these
figures that the thermal boundary layer thickness increases
sharply with a decrease in Pr. This is because for small values
of the Prandtl number Pr(≪1), the fluid is highly conductive.
Physically, if Pr increases, the thermal diffusivity decreases and
this phenomenon leads to the decreasing of energy transfer
ability that reduces the thermal boundary layer.

Fig.1 Velocity for various values of Kp

Fig.2 Temperature for various values of Kp
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Fig.3 Velocity for various values of ϕ

Fig.4 Temperature for various values of ϕ
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Fig.5 Temperature for various values of γ
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Figure 7 illustrates the variation of the wall temperature θ(0)
for various values of γ when Pr = 1 and 7. Also, to get a
physically acceptable solution, γ must be less than some critical
value, say γc, depending on Pr. From our numerical solution, it
is found that the surface temperature becoming unbounded
when γ = γc. It can be seen from this table that θ(0) becomes
large as γ approaches the critical values γc = 0.40801 and 1.381
when Pr = 1 and 7, respectively. On the other hand, Figure 8
illustrates the variation of wall temperature θ(0) with Prandtl
number Pr when γ = 1. To get a physically acceptable solution,
Pr must be greater than some critical value, say Prc, depending
on γ. It can be seen from this figure that θ(0) becomes large as
Pr approaches the critical value Prc = 4.131 when γ = 1.

Figure 9 shows the effects of permeability parameter (Kp) and
solid volume fraction of nanoparticles (ϕ) on skin friction
coefficient. From Figure 9 it is seen that the skin friction

decreases with an increasing permeability parameter (Kp) and
solid volume fraction of nanoparticles (ϕ).

The effect of permeability parameter (Kp) and solid volume
fraction of nanoparticles (ϕ) on local Nusselt number is shown
in figure10. It is found that the local Nusselt number enhances
with an increasing the values of permeability parameter (Kp)
and solid volume fraction of nanoparticles (ϕ) . The effect of

Fig.6 Temperature for various values of Pr
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Fig.8 wall Temperature for various values of Pr
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Fig.10 Nusselt number for different values of Kp and ϕ when Pr = 6.2 and
γ = 0.3

Fig.11 Local Nusselt number for different values of Pr and γ when Kp = 2
and ϕ = 0.2
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Prandtl number (Pr) and conjugate parameter for Newtonian
heating (γ) on local Nusselt number is shown in figure 11. It is
found that the local Nusselt number reduces with an increasing
the values of Pr but it increases with an increasing the values of
conjugate parameter for Newtonian heating (γ). Tables.1, 2 & 3
shows that the present results perfect agreement to the
previously published data.

CONCLUSIONS

In the present paper, the steady, two dimensional flow of a
copper (Cu) - water nanofluid over a permeable a stretching
sheet in the presence of porous medium and Newtonian
heating. The governing equations are approximated to a system
of non-linear ordinary differential equations by similarity
transformation. Numerical calculations are carried out for
various values of the dimensionless parameters of the problem.
It has been found that

1. The velocity increases whereas temperature decreases
with an increase in the permeability parameter.

2. The velocity decreases whereas temperature increases
with an increase in the solid volume fraction of
nanoparticles.

3. The fluid temperature increases in the presence of
Newtonian heating.

4. The skin friction decreases with an increase the
permeability parameter or the solid volume fraction of
nanoparticles.

5. The local Nusselt number enhances with an increase in
the permeability parameter or the solid volume fraction
of nanoparticles or conjugate parameter for Newtonian
heating whereas local Nusselt number reduces with
increase the Prandtl number.
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