

International Journal Of

Recent Scientific Research

ISSN: 0976-3031 Volume: 7(1) January -2016

CONTRA-(1, 2)*-M $_{\delta\pi}$ -CONTINUOUS FUNCTIONS IN BITOPOLOGICAL SPACES

Mohana K and Arockiarani I

THE OFFICIAL PUBLICATION OF INTERNATIONAL JOURNAL OF RECENT SCIENTIFIC RESEARCH (IJRSR) http://www.recentscientific.com/ recentscientific@gmail.com

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 7, Issue, 1, pp. 8508-8514, January, 2016 International Journal of Recent Scientific Research

RESEARCH ARTICLE

CONTRA-(1, 2)*-M -**CONTINUOUS FUNCTIONS IN BITOPOLOGICAL SPACES**

Mohana K* and Arockiarani I

Department of Mathematics, Nirmala College for Women, Coimbatore (TN), India

ARTICLE INFO	ABSTRACT				
Article History: Received 16 th October, 2015 Received in revised form 24 th November, 2015 Accepted 23 rd December, 2015 Published online 28 th January, 2016	The aim of this paper is to study some new generalization of continuous functions in bitopological space namely, $(1, 2)^*$ -M -continuous functions, $(1, 2)^*$ -M -irresolute functions, contra $(1, 2)^*$ -M -continuous and contra $(1, 2)^*$ -M -irresolute functions. Also we investigate the relationships between these functions and other existing functions in bitopological spaces.				
Key words:					
$(1, 2)^*$ -M -closed set, $(1, 2)^*$ -M - continuity, $(1, 2)^*$ -M -irresolute, contra $(1, 2)^*$ -M -continuity, contra $(1, 2)^*$ -M - irresolute function.					

Copyright © **Mohana K and Arockiarani I., 2016**, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Dontchev and Ganster [4] introduced -generalized closed set in topological spaces. Balachandran et al [3] and Dontchev et al [4] investigated generalized continuity, -generalized continuity, -generalized irresolute functions respectively. Dontchev [5] obtained a new notion of continuous functions called contra-continuous functions in the recent past. Lellis Thivagar [12] have developed the concepts of (1, 2)*-semigeneralized continuous functions in bitopological spaces. Recently Arockiarani and Mohana [2, 7] discussed (1, 2)*-ng continuous and contra $(1, 2)^*$ - πg -continuous functions in bitopological spaces. In this paper, we study the notion of new class of functions called (1, 2)*- M -continuous functions and (1, 2)*- M -irresolute functions in Bitopological space. Also we introduce few types of generalizations of contra-functions called contra (1, 2)*-M -continuous, contra (1, 2)*-M irresolute functions. Further, We discuss some properties of these functions in bitopological spaces.

Preliminaries

Throughout this paper the spaces X and Y represent non-empty bitopological spaces on which no separation axioms are

assumed, unless otherwise mentioned. We recall the following definitions and results which are useful in the sequel.

Definition: [6] A subset S of a bitopological space X is said to be $_{1,2}$ -open if

S=A \cup B where $A \in \ddagger_1$ and $B \in \ddagger_2$. A subset S of X is said to be (i) _1, 2-closed if the complement of S is _1, 2-open. (ii) _1, 2- clopen if S is both _1, 2-open and _1, 2-closed.

Definition: [6] Let S be a subset of the bitopological space X. Then the $_{1, 2}$ -interior of S denoted by $_{1, 2}$ -int(S) is defined by \cup {G: G \subseteq S and G is $_{1, 2}$ -open} and the $_{1, 2}$ -closure of S denoted by $_{1, 2}$ -cl(S) is defined by \cap {F: S \subseteq F and F is $_{1, 2}$ -closed}.

The family of all $_{1, 2}$ -closed sets of X will be denoted by $_{1, 2}$ -C(X).

The set $_{1,2}$ -C(X, x) = {V $_{1,2}$ -C(X) / x V} for x X.

Definition: A subset A of a bitopological space X is called

1. $(1, 2)^*$ -regular open [6] if A= $_{1,2}$ -int ($_{1,2}$ -cl (A)).

Department of Mathematics, Nirmala College for Women, Coimbatore (TN), India

- 2. $(1, 2)^*$ - Γ -open [6] if A $\subseteq_{1, 2}$ -int $(_{1, 2}$ -cl $(_{1, 2}$ -int (A))).
- 3. $(1, 2)^*$ -semi-open [6] if A $\subseteq_{1, 2}$ -cl $(_{1, 2}$ -int(A))

The complement of the sets mentioned from (1) to (3) are called their respective closed sets.

Definition: [2] Let S be a subset of the bitopological space X. Then

• The (1, 2)*- -interior of S denoted by (1, 2)*- -int(S) is defined by

 \cup {G: G \subseteq S and G is (1, 2)*- -open}.

• The (1, 2)*- -closure of S denoted by (1,2)*- -cl (S) is defined by

 \cap {F: S \subseteq F and F is (1, 2)*- -closed}.

Definition: [10] The $(1, 2)^{*-}$ -interior of a subset A of X is the union of all $(1, 2)^{*-}$ regular open set of X contained in A and is denoted by $(1, 2)^{*-}$ -int (A). The subset A is called $(1, 2)^{*-}$ open if $A = (1, 2)^{*-}$ -int (A), (i. e), a set is $(1, 2)^{*-}$ -open if it is the union of $(1, 2)^{*-}$ regular open sets. The complement of a $(1, 2)^{*-}$ -open set is called $(1, 2)^{*-}$ -closed. Alternatively, a subset A in X is called $(1, 2)^{*-}$ -closed if $A = (1, 2)^{*-}$ -cl (A), where $(1, 2)^{*-}$ -cl (A) = { $x \in X$: $_{1, 2}$ -int ($_{1, 2}$ -cl (U)) $A \neq W$, $U \in _{1, 2}$ and $x \in U$ }.

Definition: A subset A of a bitopological space X is called

- 1. $(1, 2)^*$ g Γ closed [1] if $(1, 2)^*$ cl (A) $\subseteq U$ whenever A $\subseteq U$ and U is $_{1,2^-}$ -open.
- (1, 2)*- g- closed [8] if 1, 2-cl (A) ⊆U whenever A ⊆ U and U is 1, 2- -open.
- 3. $(1, 2)^*$ strongly- $g\Gamma$ closed [9] if $(1, 2)^*$ cl (A) U whenever A \subset U and U is $(1, 2)^*$ - g-open.
- 4. $(1, 2)^*$ -g closed [6] if $(1, 2)^*$ cl (A) \subseteq A whenever A \subseteq U and U is $(1, 2)^*$ open in X.
- 5. $(1, 2)^*$ -M -closed set [10] if $(1, 2)^*$ cl (A) \subseteq U whenever A \subseteq U and U is $(1, 2)^*$ g-open in X.

and the complement of the sets mentioned from (1) to (5) are called their respective open sets.

Definition: A function f: X Y is called

- (1, 2)*- g-continuous [8] if the inverse image of every 1,2-closed set of Y is (1, 2)*- g-closed set in X.
- (1, 2)*- g -continuous [2] if the inverse image of every 1, 2-closed set of Y is (1, 2)*- g -closed in X.
- 3. (1, 2)*- g ^s-continuous [11] if the inverse image of every _{1,2}-closed set of Y is (1, 2)*-strongly- g -closed in X.
- 4. $(1, 2)^*$ -g -continuous if the inverse image of every _{1, 2}closed set of Y is $(1, 2)^*$ -g -closed in X.
- 5. Contra $(1, 2)^*$ g -continuous [7] if the inverse image of every _1.2-open set of Y is $(1, 2)^*$ g -closed in X.
- 6. Contra (1, 2)*- continuous [7] if the inverse image of every 1, 2-open set of Y is 1, 2-closed in X.

7. Contra $(1, 2)^*$ - g^S-continuous [11] if the inverse image of every _{1, 2}-open set of Y is $(1, 2)^*$ -strongly- g - closed in X.

Definition: [10] A space X is called $(1, 2)^*$ -T g-space if every $(1, 2)^*$ -M -closed set in it is an $(1, 2)^*$ - closed.

(1, 2)*-M -Continuous Functions

Definition: A function f: X Y is called $(1, 2)^*$ -M - continuous if the inverse image of every _{1,2}-closed set in Y is $(1, 2)^*$ -M -closed set in X.

Example: Let $X = \{a, b, c\} = Y$ with topologies $_1 = \{ , X, \{a\}, \{a, b\}\}, _2 = \{ , X, \{b\}, \{a, c\}\}, _1 = \{ , Y, \{b\}\}, _2 = \{ , Y, \{a, c\}\}$ and let f be the identity map. Clearly, f is (1, 2)*-M -continuous.

Definition: A function f: X Y is called $(1, 2)^*$ -M -irresolute if the inverse image of $(1, 2)^*$ -M -closed set in Y is $(1, 2)^*$ -M -closed set in X.

Example: Let $X = \{a, b, c, d\} = Y$ with $_1 = \{ , X, \{a\}, \{a, b, d\}\}, _2 = \{ , X, \{a, b\}, \{b\}\}, _1 = \{ , Y, \{a\}\}, _2 = \{ , Y, \{b\}\}$ and let f be the identity map. Clearly, f is $(1, 2)^*$ -M - irresolute functions.

Definition: A function f: X Y is called $(1, 2)^*$ - continuous if the inverse image of every $_{1, 2}$ -closed set of Y is $(1, 2)^*$ - closed in X.

Theorem: Every $(1, 2)^*$ - -continuous function is $(1, 2)^*$ -M - continuous function.

Proof. The proof is obvious, since every $(1, 2)^*$ - closed set is $(1, 2)^*$ -M -closed set.

Remark: The converse of the above theorem is not true in general as shown in the following example.

Example: Let $X = \{a, b, c, d\}=Y$ with $_1 = \{ , X, \{a\}, \{d\}, \{a, d\}\}, _2 = \{ , X, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}\}, _1 = \{ , Y, \{a\}, \{a, b, d\}\}, _2 = \{ , Y, \{b\}, \{a, b\}\}$. Define a function f: X Y by f (a) = a, f (b) = c, f(c) = b, f(d) = d. Then f is (1, 2)*-M - continuous function, but not (1, 2)*- -continuous function, since f $^{-1}(\{a, c, d\}) = \{a, b, d\}$ is not (1, 2)*- -closed set in X, for

 $_{1, 2}$ -closed set {a, c, d} in Y.

Theorem: Every $(1, 2)^*$ -M -continuous function is $(1, 2)^*$ - g-continuous function.

Proof. It is true that, every $(1, 2)^*$ - M -closed set is $(1, 2)^*$ -g-closed set.

Remark: The converse of the above theorem need not be true as shown in the following example.

Example: Let $X = \{a, b, c\} = Y$ with $_1 = \{ , X, \{b\}, \{a, c\}\}, _2 = \{ , X, \{a\}, \{a, b\}\},$

 $_1=\{\ ,\ Y,\ \{a\}\},\ _2=\{\ ,\ Y,\ \{a,\ c\}\}$ and let f: X $\ Y$ be an identity function. Then f is not

 $(1, 2)^*$ -M -continuous function, because $f^{-1}(\{b, c\}) = \{b, c\}$ is not $(1, 2)^*$ - M -closed set in X, for _1, 2-closed set $\{b, c\}$ in Y. However, f is $(1, 2)^*$ - g-continuous.

Theorem: Every $(1, 2)^*$ -M -continuous function is $(1, 2)^*$ -g -continuous function.

Proof. The proof is immediate, since every $(1, 2)^*$ - M -closed set is $(1, 2)^*$ - g -closed set.

Remark: The converse of the Theorem 3. 12 need not be true as shown in the following example.

Example: Let $X = \{a, b, c\} = Y$ with $_1 = \{ , X, \{b\}, \{a, b\}\}, _2 = \{ , X, \{b, c\}\},$

 $_1 = \{$, Y, $\{b\}\}$, $_2 = \{$, Y, $\{c\}\}$ and let f: X Y be an identity function. Then f is $(1, 2)^{*-}$ g -continuous, but not $(1, 2)^{*-}$ M -continuous function, since for the $_{1, 2}$ -closed sets $\{a\}$, $\{a, c\}$, $\{a, b\}$ of Y, f $^{-1}(\{a\}, \{a, c\}, \{a, b\}) = \{a\}$, $\{a, c\}$, $\{a,$

Theorem: Every $(1, 2)^*$ -M -continuous function is $(1, 2)^*$ -g ^s-continuous function.

Proof. The proof is clear, since every $(1, 2)^*$ - M -closed set is $(1, 2)^*$ - strongly- g -closed set.

Remark: The converse of the Theorem 3. 15 need not be true as shown in the following example.

Example: Let $X = \{a, b, c\} = Y$ with $_1 = \{ , X, \{b\}, \{b, c\}\}, _2 = \{ , X, \{a, b\}\},$

 $_{1} = \{$, Y, {a}}, $_{2} = \{$, Y, {a, c}}. Define a function f: X Y by f(a)=b, f(b)=a, f(c)=c. Then f is (1, 2)*- g ^scontinuous, but not (1, 2)*-M -continuous function, since for the $_{1,2}$ -closed sets {b}, {b, c} of Y, f⁻¹({b}, {b, c}) = {a}, {a, c} are not (1, 2)*- M -closed set in X.

Definition: A subset A of a bitopological space X is called (1, 2)*-M -closed set if $_{1, 2}$ -cl (A) \subseteq U whenever A \subseteq U and U is (1, 2)*- g-open in X.

Remark: Every $(1, 2)^*$ -M –closed set is $(1, 2)^*$ -M -closed set, but not conversely.

Theorem: Every $(1, 2)^*$ -M -continuous function is $(1, 2)^*$ -M -continuous function.

Proof. By Remark 3. 19, the proof is clear.

Remark: The converse of the Theorem 3. 20 need not be true as shown in the following example.

Example: In example 3. 17, f is $(1, 2)^*$ - M -continuous, but not $(1, 2)^*$ -M -continuous function, since for the _{1, 2}-closed sets {b}, {b, c} of Y, f⁻¹({b}, {b, c}) = {a}, {a, c} are not $(1, 2)^*$ -M -closed set in X.

Remark: From the above discussions, we have the following table. The symbol "1" in a cell means that a function on the corresponding row implies a function on the corresponding column. Finally, the symbol "0" means that a function on the corresponding row does not implies a function on the corresponding column.

a. $(1, 2)^*$ - continuous b. $(1, 2)^*$ - g-continuous c. $(1, 2)^*$ - g -continuous

d. $(1, 2)^{*}$ - g ^s-continuous e. $(1, 2)^{*}$ -M -continuous. f. $(1, 2)^{*}$ -M -continuous

1, 2)*-continuous functions	a	b	c	d	e	f
а	1	1	1	1	0	0
b	0	1	1	1	0	0
с	0	0	1	1	0	0
d	0	0	0	1	0	0
e	0	1	1	1	1	1
f	0	1	1	1	0	1

Remark: The following examples show that $(1, 2)^*-M$ – continuity is independent of $(1, 2)^*$ -continuity & $(1, 2)^*-g$ – continuity.

Example: Let $X = \{a, b, c, d\} = Y$, $_1 = \{ , X, \{a\}, \{d\}, \{a, d\}, \{a, c, d\}\}$, $_2 = \{ , X, \{c, d\}\}$, $_1 = \{ , Y, \{c\}\}$, $_2 = \{ , Y, \{b, c, d\}\}$. Define a function f: X Y by f (a) =b, f (b) =a, f(c) =c, f (d) = d. Then f is $(1, 2)^*$ -M -continuous function, but not $(1, 2)^*$ -continuous and $(1, 2)^*$ -g -continuous, because f¹{a, b, d} = {a, b, d} is M -closed set in X, but not $_{1, 2}$ -closed and $(1, 2)^*$ -g -closed set in X.

Example: Let $X = \{a, b, c\} = Y$, $_1 = \{ , X, \{a\}, \{a, b\}\}$, $_2 = \{ , X, \{b\}, \{a, c\}\}$, $_1 = \{ , Y, \{b\}\}$, $_2 = \{ , Y, \{b, c\}\}$. Define a function f: X Y by f (a) = b, f (b) =a, f(c) =c. Then f is (1, 2)*-continuous and (1, 2)*-g -continuous, but not (1, 2)*-M -continuous function.

Theorem: A function f: X Y is $(1, 2)^*$ -M –continuous iff f⁻¹(U) is $(1, 2)^*$ -M –open in X, for every _{1,2} –open set in Y. **Proof.** Let f be an $(1, 2)^*$ -M –continuous function and U be an _{1,2} –open set in Y. Then

 $\begin{array}{ll} f^{-1}(U^C) \text{ is } (1,2)^*\text{-}M & -\text{closed set in } X. \text{ But } f^{-1}(U^C) = [f^{-1}(U)]^C \\ \text{and hence } f^{-1}(U) \text{ is } (1,2)^*\text{-}M & -\text{open in } X. \text{ Conversely, } f^{-1}(U) \\ \text{is } (1,2)^*\text{-}M & -\text{open in } X, \text{ for every } _{1,2}\text{-}\text{open set } U \text{ in } Y. U^C \\ \text{is } _{1,2}\text{-}\text{closed set in } Y. \text{ Then } [f^{-1}(U)]^C \text{ is } (1,2)^*\text{-}M & -\text{closed in } \\ X. \text{ But } [f^{-1}(U)]^C = f^{-1}(U^C) \text{ and hence } f^{-1}(U^C) \text{ is } (1,2)^*\text{-}M & -\text{closed set in } X. \text{ Therefore, } f \text{ is } (1,2)^*\text{-}M & -\text{continuous.} \end{array}$

Theorem: Let f: X Y and g: Y Z be two functions. Then

- 1. gof: X Z is $(1, 2)^*$ -M –continuous, if g is $(1, 2)^*$ continuous and f is $(1, 2)^*$ -M –continuous function.
- 2. gof: X Z is $(1, 2)^*$ -M –irresolute, if g is $(1, 2)^*$ -M –irresolute and f is $(1, 2)^*$ -M –irresolute.
- 3. gof: X Z is (1, 2)*-M -continuous, if g is (1, 2)*-M -continuous and f is (1, 2)*-M -irresolute.

Proof. The proof follows from the definitions.

Lemma: The product of two $(1, 2)^*$ - M –open sets is $(1, 2)^*$ - M –open sets in the product space.

Proof. Let A and B be $(1, 2)^*$ - M -open sets of two space X and Y respectively and V = A x B \subseteq X x Y. Let F \subseteq V be a $(1, 2)^*$ - g-closed in X x Y, then there exists two $(1, 2)^*$ - gclosed sets F₁ \subseteq A, F₂ \subseteq B. So, F₁ \subseteq $(1, 2)^*$ - int (A) and F₂ \subseteq $(1, 2)^*$ - int (B). Hence, F₁ x F₂ \subseteq A x B and F₁ x F₂ \subseteq $(1, 2)^*$ - int (A) x $(1, 2)^*$ - int (B) = $(1, 2)^*$ - int (A x B). Therefore, A x B is $(1, 2)^*$ - M -open subset of a space X x Y.

Definition: A function f: X Y is called $(1, 2)^{*-}$ S-closed if the image of $(1, 2)^{*-}$ -closed set in X is $(1, 2)^{*-}$ -closed set in Y.

Theorem: Let f: X Y be $(1, 2)^*$ -continuous and $(1, 2)^*$ - S-closed. Then for every $(1, 2)^*$ -M –closed subset A of X, f (A) is $(1, 2)^*$ -M –closed set in Y.

Proof. Let A be $(1, 2)^*$ -M –closed in X. Let f (A) \subseteq W, where W is $_{1,2}$ -open set in Y. Since A \subseteq

 f^{-1} (W) is _{1,2}-open set in X, f^{-1} (W) is (1, 2)*- g-open set in X. Since A is (1, 2)*-M –closed set and f^{-1} (W) is (1, 2)*- g-open set in X, then (1, 2)*- cl (A) ⊆ f^{-1} (W). Thus f((1, 2)*- cl (A)) ⊆ W. Hence, (1, 2)*- cl (f (A)) ⊆ f((1, 2)*- cl (A)) ⊆ W, since f is (1, 2)*- ^S-closed. Hence, f (A) is (1, 2)*-M –closed in Y.

Theorem: Let f: X Y be a function. Then the following statements are equivalent.

- 1. f is $(1, 2)^*$ -M –irresolute function.
- For x ∈ X and any (1, 2)*-M -closed set V of Y containing f(x), there exists an (1, 2)*-M -closed set U such that x ∈ U and f (U) ⊂ V.
- 3. Inverse image of every (1, 2)*-M –open set of Y is (1, 2)*-M –open in X.

Proof. [1] [2]: Let V be an $(1, 2)^*$ -M -closed set of Y and $f(x) \in V$. Since f is $(1, 2)^*$ -M -irresolute, $f^1(V)$ is $(1, 2)^*$ -M -closed in X and $x \in f^{-1}(V)$. Put $U = f^1(V)$. Then, $x \in U$ and $f(U) \subset V$.

[2] [1]: Let V be an $(1, 2)^{*-}$ M -closed set of Y and $x \in f^{-1}(V)$. Then $f(x) \in V$. Therefore, by [2], there exists an $(1, 2)^{*-}$ M -closed set U_x such that $x \in U_x$ and $f(U_x) \subset V$. Hence $x \in U_x \subset f^1(V)$. This implies then, $f^1(V)$ is a union of $(1, 2)^{*-}$ M -closed sets of X. By Theorem 4. 1[10], $f^1(V)$ is

 $(1, 2)^*$ - M -closed set. The show that, f is $(1, 2)^*$ - M - irresolute.

[2] [3]: It is Obvious.

Definition: A function f: X Y is called $(1, 2)^*$ - -irresolute if the inverse image of

 $(1, 2)^*$ - -closed set in Y is $(1, 2)^*$ - -closed set in X.

Theorem: Let f: X Y be $(1, 2)^*$ - M --irresolute. Then f is $(1, 2)^*$ - -irresolute if X is $(1, 2)^*$ -T g-space.

Proof. Let V be a $(1, 2)^{*-}$ -closed subset of Y. Every $(1, 2)^{*-}$ - closed set is $(1, 2)^{*-}$ M -closed and then V is $(1, 2)^{*-}$ M - closed in Y. Since f is $(1, 2)^{*-}$ M -irresolute, then f⁻¹(V) is $(1, 2)^{*-}$ M -closed in X. Since X is $(1, 2)^{*-}$ g-space, then f⁻¹(V) is $(1, 2)^{*-}$ -closed set in X. Thus, f is $(1, 2)^{*-}$ -irresolute.

Theorem: Let f: X Y and g: Y Z be two functions. Let Y be $(1, 2)^{*}$ -T g-space. Then gof is

 $(1,\,2)^{*-}\,M$ –continuous if g is $(1,\,2)^{*-}\,M$ –continuous and f is $(1,\,2)^{*-}\,M$ –continuous.

Proof. The proof is obvious.

Theorem: Let f: X Y be onto, $(1, 2)^*$ - M –irresolute and $(1, 2)^*$ - -irresolute. If X is a $(1, 2)^*$ -T g-space then Y is also a $(1, 2)^*$ -T g-space

Proof. The proof is obvious.

Theorem: If f: X Y is bijection, $(1, 2)^*$ -open and $(1, 2)^*$ - M -continuous, then f is $(1, 2)^*$ - M -irresolute.

Proof. Let V be $(1, 2)^*$ - M -closed set in Y and let $f^{-1}(V) \subseteq U$, where U is $_{1, 2}$ -open set in X. Since f is $(1, 2)^*$ -open, f(U) is $_{1, 2}$ -open set in Y. Every $_{1, 2}$ -open set is $(1, 2)^*$ - g-open set and hence f (U) is

(1, 2)*- g-open. Clearly, $V \subseteq f$ (U). Then (1, 2)*- cl (V) $\subseteq f$ (U) and thus f⁻¹((1, 2)*- cl (V)) \subseteq U. Since f is (1, 2)*- M -continuous and since (1, 2)*- cl(V) is a _{1, 2}-closed subset of Y, then (1, 2)*- cl(f⁻¹(V)) \subseteq (1, 2)*- cl(f⁻¹((1, 2)*- cl(V))) = f⁻¹((1, 2)*- cl(V)) \subseteq U. U is _{1, 2}-open set and hence (1, 2)*- g-open set in X. Thus we have (1, 2)*- cl(f⁻¹(V)) \subseteq U whenever f⁻¹(V) \subseteq U and U is (1, 2)*- g-open set in X. This shows that f⁻¹(V) is (1, 2)*- M -closed set in X. Hence f is (1, 2)*- M -irresolute.

Contra-(1, 2)*-M -Continuous Functions

Definition: 4. 1 A function f: X Y is called contra- $(1, 2)^*$ -M -continuous if the inverse image of every _{1, 2}-open set of Y is $(1, 2)^*$ -M -closed set in X.

Example: Let $X = \{a, b, c\} = Y$ with topologies $_1 = \{ , X, \{b\}\}, _2 = \{ , X, \{c\}\}, _1 = \{ , Y, \{a\}\}, _2 = \{ , Y, \{a, c\}\}$ and let f be an identity function. Clearly, f is contra-(1, 2)*-M -continuous function.

Definition: A function f: X Y is called contra- $(1, 2)^*$ -M - irresolute if the inverse image of $(1, 2)^*$ -M -open set in Y is $(1, 2)^*$ -M -closed set in X.

Example: Let $X = \{a, b, c\} = Y$ with topologies $_1 = \{ , X, \{a\}, \{b, c\}\}, _2 = \{ , X, \{a, b\}, \{c\}\}, _1 = \{ , Y, \{c\}\}, _2 =$

 $\{ , Y, \{b\}\}$ and define a function f: X Y by f(a) = c, f(b) = b,

f(c) = a. Then f is contra- $(1, 2)^*$ -M -irresolute function.

Remark: The family of all $(1, 2)^*$ -M -open sets is denoted by $(1, 2)^*$ -M -O(X).

The set $(1, 2)^*$ -M -O(X, x) = {V $(1, 2)^*$ -M -O(X) / x V} for x X.

Theorem: Let f: X Y be a function. Then the following are equivalent.

- 1. f is contra- $(1, 2)^*$ -M -continuous.
- 2. The inverse image of each $_{1,2}$ -closed set in Y is (1, 2)*-M -open set in X.
- 3. For each x X and each F $_{1,2}$ -C(Y, f(x)), there exists U (1, 2)*-M -O(X, x) such that f (U) \subset F.

Proof. 1 => 2, 2 => 1 and 2 => 3 are obvious.

3=> 2. Let F be any _{1,2}-closed set of Y and x f⁻¹(F). Then f(x) F and there exists U_x (1, 2)*-M -O(X, x) such that f (U_x) ⊂ F. Hence we obtain f⁻¹(F) = $\bigcup \{U_x / x f^{-1}(F)\}$ (1, 2)*-M -O(X). Thus the inverse of each _{1,2}-closed set in Y is (1, 2)*-M -open set in X.

Remark: The concepts of $(1, 2)^*$ -M -continuity and contra- $(1, 2)^*$ -M -continuity are independent as shown in the following example.

Example: Let $X = \{a, b, c\} = Y$ with topologies $_1 = \{ , X, \{a\}, \{b, c\}\}, _2 = \{ , X, \{a, b\}, \{c\}\}, _1 = \{ , Y, \{a\}, \{a, b\}\}, _2 = \{ , Y, \{b\}, \{a, c\}\}$ respectively. Let f: X Y be defined by

f (a) = b, f (b) = c, f(c) = a. Clearly, f is $(1, 2)^*$ -M -continuous function, but f is not contra- $(1, 2)^*$ -M -continuous. Because, f ¹({a}) = {c} is not $(1, 2)^*$ -M -closed set in X, where {a} is ₁, ₂-open set in Y

Example: Let $X = \{a, b, c\} = Y$ with $_1 = \{ , X, \{a\}\}, _2 = \{ , X, \{c\}\}, _1 = \{ , Y, \{a, b\}\}, _2 = \{ , Y, \{b\}\}$ respectively. Let f: X Y be an identity function. Clearly, f is contra-(1, 2)*-M -continuous function, but f is not (1, 2)*-M -continuous. Because, f $^{-1}(\{c\}, \{a, c\}) = \{c\}, \{a, c\}$ are not (1, 2)*-M - closed set in X, where $\{c\}$ and $\{a, c\}$ are $_{1,2}$ -open set in Y.

Theorem: A function f: X Y is $(1, 2)^*$ -M -continuous if for each x X and each _{1, 2}-open set V of Y containing f(x), there exists U $(1, 2)^*$ -M -O(X, x) such that f(U) \subset V.

Theorem: If a function f: X Y is contra- $(1, 2)^*$ -M - continuous and Y is $(1, 2)^*$ -regular then f is $(1, 2)^*$ -M - continuous.

Proof. Let x be an arbitrary point of X and V be an $_{1, 2}$ -open set of Y containing f(x). Since Y is $(1, 2)^*$ -regular, there exists an $_{1, 2}$ -open set W of Y containing f(x) such that $_{1, 2}$ -cl (W) \subset V. Since f is contra- $(1, 2)^*$ -M -continuous, by Theorem 4. 6, there exists U $(1, 2)^*$ -M -O(X, x) such that f (U) $\subset _{1, 2}^*$ -

cl (W). Then f (U) $\subset_{1,\,2}\text{-cl}$ (W) $\subset\,$ V. Hence by Theorem 4. 10, f is

 $(1, 2)^*$ -M -continuous function.

Definition: A function f: X Y is called contra- $(1, 2)^*$ - continuous if the inverse image of every _{1, 2}-open set of Y is $(1, 2)^*$ - closed set in X.

Theorem: Every contra- $(1, 2)^*$ - continuous function is contra- $(1, 2)^*$ -M -continuous function.

Proof. The proof follows from definitions.

Remark: The converse of the above theorem 4. 13 need not be true as shown in the following example.

Example: Let $X = \{a, b, c, d\} = Y$ with topologies $_1 = \{ , X, \{a\}, \{d\}, \{a, d\}, \{a, c\}, \{a, c, d\}\}, _2 = \{ , X, \{c, d\}\}, _1 = \{ , Y, \{a\}\}, _2 = \{ , Y, \{a, b, d\}\}$ respectively. Define f: X Y be a function f (a) = b, f (b) = a, f(c) = c, f (d) = d. Then, f is contra-(1, 2)*-M -continuous function, but not contra-(1, 2)*-continuous. Since, $f^{1}(\{a, b, d\}) = \{a, b, d\}$ is not $(1, 2)^{*-}$ closed set in X, where $\{a, b, d\}$ is $_{1,2}$ -open set in Y.

Definition: A function f: X Y is called

- 1. Contra-(1, 2)*- M –continuous if the inverse image of every _{1,2}-open set of Y is (1, 2)*- M -closed set in X.
- 2. Contra-(1, 2)*- g-continuous if the inverse image of every _{1,2}-open set of Y is (1, 2)*- g-closed set in X.

Theorem: Every contra- $(1, 2)^*$ -M -continuous function is contra- $(1, 2)^*$ -M -continuous function.

Proof. The proof is immediate.

Remark: The converse of the above theorem 4. 15 need not be true as shown in the following example.

Example: Let $X = \{a, b, c\} = Y$ with topologies $_1 = \{ , X, \{a\}\}, _2 = \{ , X, \{a, b\}, \{c\}\}, _1 = \{ , Y, \{c\}\}, _2 = \{ , Y, \{b, c\}\}$ respectively. Let f: X Y be an identity function. Then, f is contra-(1, 2)*-M -continuous function, but not contra-(1, 2)*-M -continuous function. Since,

 $f^{1}({c}) = {c}$ is not $(1, 2)^{*}$ -M -closed set in X, where {c} is $_{1, 2}$ -open set in Y

Theorem: Every contra- $(1, 2)^*$ -M -continuous function is contra- $(1, 2)^*$ - g -continuous function.

Proof. The proof is clear.

Theorem: Every contra $(1, 2)^*$ -M -continuous function is contra $(1, 2)^*$ - g-continuous function.

Proof. The proof is obvious.

Remark: The converse of the theorems 4. 18 and 4. 19 need not be true as shown the following example.

Example: Let $X = \{a, b, c\} = Y$ with topologies $_1 = \{ , X, \{a\}, \{a, b\}\}, _2 = \{ , X, \{b, c\}\}, _1 = \{ , Y, \{a\}\}, _2 = \{ , Y, \{a, c\}\}$ respectively. Let f: X Y be an identity function. Then, f is neither contra- $(1, 2)^*$ - g-continuous function nor contra- $(1, 2)^*$ - g -continuous, but not contra-

(1, 2)*-M -continuous function. Since, $f^1(\{a\}, \{a, c\}) = \{a\}$, {a, c} is not (1, 2)*-M -closed set in X, where {a}, {a, c} are 1, 2-open set in Y

Theorem: Every contra- $(1, 2)^*$ -M -continuous function is contra- $(1, 2)^*$ - g ^s -continuous function.

Proof. The proof follows from definitions.

Remark: The converse of the above theorem 4. 21 need not be true as shown the following example.

Example: In Example 4. 17, f is contra- $(1, 2)^*$ - g ^S- continuous, but not contra- $(1, 2)^*$ -M -continuous function. Since, f¹({c}) = {c} is not (1, 2)^*-M -closed set in X, where {c} is $_{1,2}$ -open set in Y

Remark: The concepts of contra- $(1, 2)^*$ -M -continuous and contra- $(1, 2)^*$ -continuous functions are independent of each other as shown in the following example.

Example: Let $X = \{a, b, c\} = Y$ with topologies $_1 = \{ , X, \{a\}, \{b, c\}\}, _2 = \{ , X, \{a, b\}, \{c\}\}, _1 = \{ , Y, \{b\}\}, _2 = \{ , Y, \{b, c\}\}$ respectively. Let f: X Y be an identity function. Clearly, f is contra-(1, 2)*-M -continuous function, but not contra-(1, 2)*-continuous. Because,

 $f^{1}({b}) = {b}$ is not _1,2-closed set in X, where {c} is _1,2-open set in Y

Example: Let $X = \{a, b, c\} = Y$ with topologies $_1 = \{ , X, \{b\}, \{a, b\}\}, _2 = \{ , X, \{b, c\}\}, _1 = \{ , Y, \{a\}\}, _2 = \{ , Y, \{a, c\}\}$ respectively. Define a function f: X Y by f(a) = c, f(b) = b, f(c) = a. Then, f is not contra-(1, 2)*-M -continuous function, because, $f^{-1}(\{a\}, \{a, c\}) = \{c\}, \{a, c\}$ are not (1, 2)*-M -closed set in X, where $\{a\}, \{a, c\}$ are $_{1, 2}$ -open set in Y. However, f is contra-(1, 2)*-continuous.

Remark: The composition of two contra- $(1, 2)^*$ -M - continuous functions need not be contra- $(1, 2)^*$ -M - continuous as the following example shows.

Example: Let $X = \{a, b, c\} = Y=Z$ with $_1 = \{ , X, \{a\}, \{a, b\}\}, _2 = \{ , X, \{b, c\}, \{c\}\}, _1 = \{ , Y, \{c\}\}, _2 = \{ , Y, \{b\}\}$ and $_1 = \{ , Z, \{a\}\}, _2 = \{ , Z, \{a, c\}\}$. Define a function

f: X Y by f(a) = c, f(b) = b, f(c) = a and g: Y Z be an identity function. Then both f and g are contra- $(1, 2)^*$ -M - continuous function, but gof is not contra- $(1, 2)^*$ -M - continuous. Because, $(gof)^{-1}(\{a\}, \{a, c\}) = \{c\}, \{a, c\}$ are not $(1, 2)^*$ -M -closed set in X, where $\{a\}$ and $\{a, c\}$ are $_{1, 2}$ -open set in Y.

Theorem: If f: X Y is contra- $(1, 2)^*$ -M -continuous function and g: Y Z is a $(1, 2)^*$ -continuous function. Then gof: X Z is contra- $(1, 2)^*$ -M -continuous.

Proof. The proof follows from the definitions.

Theorem: If f: X Y is $(1, 2)^*$ -M -irresolute function and g: Y Z is a contra- $(1, 2)^*$ -M -continuous function. Then gof: X Z is contra- $(1, 2)^*$ -M -continuous.

Proof. The proof is obvious.

Theorem: Let f: X Y be a function then the following are equivalent.

- 1. f is contra- $(1, 2)^*$ -M -irresolute.
- For x X and any (1, 2)*-M -open set V of Y containing f(x) thereexists an (1, 2)*-M -closed set U such that x X and f (U) ⊂ V.
- 3. Inverse image of every (1, 2)*-M -closed set in Y is (1, 2)*-M -open in X.

Proof. $1 \Rightarrow 2$. Let V be an $(1, 2)^*$ -M -open set in Y and f(x)V. Since f is contra $(1, 2)^*$ -M -irresolute, $f^{-1}(V)$ is $(1, 2)^*$ -M -closed set in X and x $f^{-1}(V)$. Put $U = f^{-1}(V)$. Then x U and

 $f(U) \subset V.$

2=>1. Let V be an (1, 2)*-M -open set in Y and x $f^{-1}(V)$. Then f(x) V. Hence by 2, there exists an (1, 2)*-M -closed set U_x such that x U_x and $f(U_x) \subset V$. Thus x $U_x \subset f^{-1}(V)$. This implies that $f^{-1}(V)$ is a union of (1, 2)*-M -closed sets of X. By Theorem 4. 1[10], $f^{-1}(V)$ is (1, 2)*-M -closed set of X. This shows that f is contra-(1, 2)*-M -irresolute.

1<=>3. Let V be an $(1, 2)^*$ -M -closed in Y. Then Y-V is $(1, 2)^*$ -M -open set in Y. Since f is contra $(1, 2)^*$ -M -irresolute. f $^{-1}$ (Y-V) is $(1, 2)^*$ -M -closed set in X. Also f $^{-1}$ (Y-V) = X - f $^{-1}$ (V). Therefore, X- f $^{-1}$ (V) is $(1, 2)^*$ -M -closed set in X. Hence, f $^{-1}$ (V) is $(1, 2)^*$ -M -open set in X.

Remark: The concepts of contra- $(1, 2)^*$ -M -irresolute function and $(1, 2)^*$ -M -irresolute function are independent of each other as shown in the following example.

Example: Let $X = \{a, b, c, d\} = Y$ with topologies $_1 = \{ , X, \{a\}, \{a, b, d\}\}, _2 = \{ , X, \{a, b\}, \{b\}\}, _1 = \{ , Y, \{a\}\}, _2 = \{ , Y, \{b\}\}$ respectively. Let f: X Y be an identity function. Clearly, f is $(1, 2)^*$ -M -irresolute function, but not contra-(1, 2)*-M -irresolute, because

 $f^1(\{a\}, \{b\}, \{a, b\}) = \{a\}, \{b\}, \{a, b\}$ are not $(1, 2)^* \cdot M$ - closed set in X, where $\{a\}, \{b\}$ and $\{a, b\}$ are $(1, 2)^* \cdot M$ -open set in Y

Example: From Example 4. 4, f is contra- $(1, 2)^*$ -M -irresolute function, but not $(1, 2)^*$ -M -irresolute, because, $f^1(\{a\}, \{a, c\}) = \{c\}, \{a, c\}$ are not $(1, 2)^*$ -M -closed set in X, where $\{a\}$ and $\{a, c\}$ are $(1, 2)^*$ -M -closed set in Y.

Theorem: Let f: X Y and g: Y Z be any two functions such that gof: X Z,

- If f is contra-(1, 2)*-M -irresolute function and g is (1, 2)*-M -continuous function then gof is contra-(1, 2)*-M -continuous.
- If f is (1, 2)*-M -irresolute function and g is contra-(1, 2)*-M -irresolute function then gof is contra-(1, 2)*-M -irresolute.

Proof. The proof follows from the definitions.

References

- 1. Arockiarani. I and Mohana. K, (1, 2)*- g -closed sets and (1, 2)*-Quasi- -normal Spaces in Bitopological settings, Antarctica J. Math., 7(3) (2010), 345-355.
- 2. Arockiarani. I and Mohana. K, (1, 2)*- g -continuous functions in Bitopological spaces, Acta ciencia Indica, Vol. XXXVII, M. No. 4,(2011), 819-829.
- 3. Balachandran. K, Maki. H and Devi. R, Remarks on semigeneralized closed sets and generalized semi-closed sets, Kyungpook Math. J., 36(1996), 155-163.
- Dontchev. J and Ganster. M, On -generalised closed set and T3/4-spaces, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 17(1996), 15-31.

- Dontchev. J, Contra-continuous function and strongly Sclosed spaces, Internat. J. Math. Math. Sci., 19(2) (1996), 303-310.
- Lellis Thivagar. M, Ravi. O, On stronger forms of (1, 2)*- quotient mappings in bitopological spaces. Internat. J. Math. Game theory and Algebra. Vol. 14, No. 6 (2004), 481-492.
- Mohana. K, Arockiarani. I, Contra (1,2)*- g Continuous functions in Bitopological spaces, Advances in Applied Mathematical Analysis, Vol. 6, No. 2(2011), pp. 95-105.
- 8. Mohana. K, Arockiarani. I, (1, 2)*- g-homeomorphims in Bitopological spaces, CiiT Inter. J. Automation and
- Autonomous System, April (2011). Mohana. K, Arockiarani. I, (1, 2)*-strongly - g -closed sets, Journal of Advanced studies in Topology, Vol.2, No. 2(2011), 31-36.
- Mohana. K, Arockiarani. I, (1, 2)*- M –closed sets in bitopological spaces, *International Journal of Mathematical Archive*, 3(5), 2012, 2083-2088..
- Mohana. K, Arockiarani. I, On some New functions of (1, 2)*- g S-continuity in Bitopological spaces, (Communicated).
- 12. Ravi. O and Lellis Thivagar. M, A bitopological (1, 2)*semigeneralized continuous maps, Bull. Malays. Sci. Soc.,(2)29(1) (2006), 79-88.

How to cite this article:

Mohana K and Arockiarani I.2016, Contra-(1, 2)*-M -Continuous Functions In Bitopological Spaces. Int J Recent Sci Res. 7(1), pp. 8508-8514.

