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ARTICLE INFO ABSTRACT

The aim of this paper is to study some new generalization of continuous functions in bitopological
space namely, (1, 2)*-Mδπ-continuous functions, (1, 2)*-Mδπ-irresolute functions, contra (1, 2)*-
Mδπ-continuous and contra (1, 2)*-Mδπ-irresolute functions. Also we investigate the relationships
between these functions and other existing functions in bitopological spaces.

INTRODUCTION

Dontchev and Ganster [4] introduced δ-generalized closed set
in topological spaces. Balachandran et al [3] and Dontchev et
al [4] investigated generalized continuity, δ-generalized
continuity, δ-generalized irresolute functions respectively.
Dontchev [5] obtained a new notion of continuous functions
called contra-continuous functions in the recent past. Lellis
Thivagar [12] have developed the concepts of (1, 2)*-semi-
generalized continuous functions in bitopological spaces.
Recently Arockiarani and Mohana [2, 7] discussed (1, 2)*-gα-
continuous and contra (1, 2)*-gα-continuous functions in
bitopological spaces. In this paper, we study the notion of new
class of functions called (1, 2)*- Mδπ-continuous functions and
(1, 2)*- Mδπ-irresolute functions in Bitopological space. Also
we introduce few types of generalizations of contra-functions
called contra (1, 2)*-Mδπ-continuous, contra (1, 2)*-Mδπ-
irresolute functions. Further, We discuss some properties of
these functions in bitopological spaces.

Preliminaries

Throughout this paper the spaces X and Y represent non-empty
bitopological spaces on which no separation axioms are

assumed, unless otherwise mentioned. We recall the following
definitions and results which are useful in the sequel.

Definition: [6] A subset S of a bitopological space X is said
to be τ1, 2-open if

S=AB where 1A and 2B .A subset S of X is said to

be (i) τ1, 2-closed if the complement of S is τ1, 2-open. (ii) τ1, 2-
clopen if S is both τ1, 2-open and τ1, 2-closed.

Definition: [6]    Let S be a subset of the bitopological space X.
Then the τ1, 2-interior of S denoted by τ1, 2-int(S) is defined by
{G:  G S and G is   τ1, 2-open} and the τ1, 2-closure of S
denoted by τ1, 2-cl(S) is defined by {F:  S F and F is τ1, 2-
closed}.

The family of all τ1, 2-closed sets of X will be denoted by τ1, 2-
C(X).

The set τ1, 2-C(X, x) = {V Є τ1, 2-C(X) / x Є V} for x Є X.

Definition: A subset A of a bitopological space X is called

1. (1, 2)*-regular open [6]  if A= τ1, 2-int (τ1, 2-cl (A)).
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2. (1, 2)*- -open [6]  if A  τ1, 2-int (τ1, 2-cl (τ1, 2-int
(A))).

3. (1, 2)*-semi-open [6]  if A  τ1, 2-cl (τ1, 2-int(A))

The complement of the sets mentioned from (1) to (3) are
called their respective closed sets.

Definition: [2] Let S be a subset of the bitopological space X.
Then

 The (1, 2)*-α-interior of S denoted by (1, 2)*-α-int(S) is
defined by

{G: G S and G is (1, 2)*-α-open}.
 The (1, 2)*-α-closure of S denoted by (1,2)*-α-cl (S) is

defined by
{F: S F and F is (1, 2)*-α-closed}.

Definition: [10] The (1, 2)*-δ-interior of a subset A of X is the
union of all (1, 2)*-regular open set of X contained in A and is
denoted by (1, 2)*-δ-int (A). The subset A is called (1, 2)*-δ-
open if A = (1, 2)*-δ-int (A), (i. e), a set is (1, 2)*-δ-open if it is
the union of (1, 2)*-regular open sets. The complement of a (1,
2)*-δ-open set is called (1, 2)*-δ-closed. Alternatively, a subset
A in X is called (1, 2)*-δ-closed if A = (1, 2)*-δ-cl (A), where
(1, 2)*-δ-cl (A) = {xX: τ1, 2-int (τ1, 2-cl (U)) ∩ A  , U 
τ1, 2 and xU}.

Definition: A subset A of a bitopological space X is called

1. (1, 2)*- πg - closed [1] if (1, 2)*-αcl (A) U
whenever AU and U is τ1, 2-π-open.

2. (1, 2)*-πg- closed [8] if τ1, 2-cl (A) U whenever A
U and U is τ1, 2- π-open.

3. (1, 2)*- strongly- πg - closed [9]  if (1, 2)*-αcl (A) 
U whenever AU and U is (1, 2)*-πg-open.

4. (1, 2)*- gα- closed [6] if (1, 2)*-αcl (A) A
whenever AU and U is (1, 2)*-α-open in X.

5. (1, 2)*-Mδπ-closed set [10] if (1, 2)*-δcl (A) U
whenever AU and U is (1, 2)*-πg-open in X.

and the complement of the sets mentioned from (1) to (5) are
called their respective open sets.

Definition: A function f: X → Y is called

1. (1, 2)*-πg-continuous [8] if the inverse image of every
σ1, 2-closed set of Y is (1, 2)*-πg-closed set in X.

2. (1, 2)*-πgα-continuous [2] if the inverse image of every
σ1, 2-closed set of Y is (1, 2)*-πgα-closed in X.

3. (1, 2)*-πgαs-continuous [11] if the inverse image of
every σ1, 2-closed set of Y is (1, 2)*-strongly-πgα-closed
in X.

4. (1, 2)*-gα-continuous if the inverse image of every σ1, 2-
closed set of Y is (1, 2)*-gα-closed in X.

5. Contra (1, 2)*-πgα-continuous [7] if the inverse image
of every σ1, 2-open set of Y is (1, 2)*-πgα-closed in X.

6. Contra (1, 2)*- continuous [7] if the inverse image of
every σ1, 2-open set of Y is τ1, 2-closed in X.

7. Contra (1, 2)*-πgαS-continuous [11] if the inverse image
of every σ1, 2-open set of Y is (1, 2)*-strongly-πgα-
closed in X.

Definition: [10] A space X is called (1, 2)*-Tδπg-space if every
(1, 2)*-Mδπ-closed set in it is an (1, 2)*-δ-closed.

(1, 2)*-Mδπ-Continuous Functions

Definition: A function f: X→Y is called (1, 2)*-Mδπ-
continuous if the inverse image of
every σ1, 2-closed set in Y is (1, 2)*-Mδπ-closed set in X.

Example: Let X = {a, b, c} =Y with topologies τ1 = {Φ, X,
{a}, {a, b}}, τ2 = {Φ, X, {b}, {a, c}}, σ1= {Φ, Y, {b}}, σ2 =
{Φ, Y, {a, c}} and let f be the identity map. Clearly, f  is (1,
2)*-Mδπ-continuous.

Definition: A function f: X→Y  is called (1, 2)*-Mδπ-irresolute
if the inverse image of (1, 2)*-Mδπ-closed set in Y  is (1, 2)*-
Mδπ-closed set in X.

Example: Let X = {a, b, c, d} =Y with τ1 = {Φ, X, {a}, {a, b,
d}}, τ2 = {Φ, X, {a, b}, {b}}, σ1= {Φ, Y, {a}}, σ2 = {Φ, Y,
{b}} and let f be the identity map. Clearly, f  is (1, 2)*-Mδπ-
irresolute functions.

Definition: A function f: X → Y is called (1, 2)*-δ-continuous
if the inverse image of every    σ1, 2-closed set of Y is (1, 2)*-δ-
closed in X.

Theorem: Every (1, 2)*-δ-continuous function is (1, 2)*-Mδπ-
continuous function.

Proof. The proof is obvious, since every (1, 2)*-δ-closed set is
(1, 2)*-Mδπ-closed set.

Remark: The converse of the above theorem is not true in
general as shown in the following example.

Example: Let  X = {a, b, c, d}=Y with τ1 = {Φ, X, {a}, {d}, {a,
d}}, τ2 = {Φ, X, {d}, {a, d}, {c, d}, {a, c, d}}, σ1 = {Φ, Y, {a},
{a, b, d}}, σ2 = {Φ, Y, {b}, {a, b}}. Define a function f: X→Y
by f (a) = a, f (b) = c, f(c) = b, f(d) = d. Then f is (1, 2)*-Mδπ-
continuous function, but not (1, 2)*-δ-continuous function,
since f -1({a, c, d}) = {a, b, d} is not (1, 2)*-δ-closed set in X,
for
σ1, 2-closed set {a, c, d} in Y.

Theorem: Every (1, 2)*-Mδπ-continuous function is (1, 2)*-πg-
continuous function.

Proof. It is true that, every (1, 2)*- Mδπ-closed set is (1, 2)*-
πg-closed set.

Remark: The converse of the above theorem need not be true
as shown in the following example.

Example: Let X = {a, b, c} =Y with τ1 = {Φ, X, {b}, {a, c}}, τ2

= {Φ, X, {a}, {a, b}},
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σ1 = {Φ, Y, {a}}, σ2 = {Φ, Y, {a, c}} and let f: X→Y be an
identity function. Then f is not
(1, 2)*-Mδπ-continuous function, because f -1({b, c}) = {b, c} is
not (1, 2)*- Mδπ-closed set in X, for σ1, 2-closed set {b, c} in Y.
However, f is (1, 2)*- πg-continuous.

Theorem: Every (1, 2)*-Mδπ-continuous function is (1, 2)*-
πgα-continuous function.

Proof. The proof is immediate, since every (1, 2)*- Mδπ-closed
set is (1, 2)*- πgα-closed set.

Remark: The converse of the Theorem 3. 12 need not be true
as shown in the following example.

Example: Let X = {a, b, c} =Y  with τ1 = {Φ, X, {b}, {a, b}},
τ2 = {Φ, X, {b, c}},

σ1 = {Φ, Y, {b}}, σ2 = {Φ, Y, {c}} and let f: X→Y be an
identity function. Then f is  (1, 2)*- πgα-continuous, but  not
(1, 2)*-Mδπ-continuous function, since for the σ1, 2-closed  sets
{a}, {a, c}, {a, b} of Y, f -1({a}, {a, c}, {a, b}) = {a}, {a, c},
{a, b} are not (1, 2)*- Mδπ-closed set in X.

Theorem: Every (1, 2)*-Mδπ-continuous function is (1, 2)*-
πgαS-continuous function.

Proof. The proof is clear, since every (1, 2)*- Mδπ-closed set
is (1, 2)*- strongly-πgα-closed set.

Remark: The converse of the Theorem 3. 15 need not be true
as shown in the following example.

Example: Let X = {a, b, c} =Y  with τ1 = {Φ, X, {b}, {b, c}},
τ2 = {Φ, X, {a, b}},
σ1 = {Φ, Y, {a}}, σ2 = {Φ, Y, {a, c}}. Define a function f:
X→Y by f(a)=b, f(b)=a, f(c)=c. Then f is (1, 2)*- πgαs-
continuous, but not (1, 2)*-Mδπ-continuous function, since for
the σ1, 2-closed sets {b}, {b, c} of  Y, f -1({b}, {b, c}) = {a}, {a,
c} are  not (1, 2)*- Mδπ-closed set in X.

Definition: A subset A of a bitopological space X  is called (1,
2)*-Mπ-closed set if τ1, 2-cl (A) U whenever AU and U is
(1, 2)*-πg-open in X.

Remark: Every (1, 2)*-Mδπ –closed set is (1, 2)*-Mπ-closed set,
but not conversely.

Theorem: Every (1, 2)*-Mδπ-continuous function is (1, 2)*- Mπ
-continuous function.

Proof. By Remark 3. 19, the proof is clear.

Remark: The converse of the Theorem 3. 20  need not be true
as shown in the following example.

Example: In example 3. 17, f is (1, 2)*- Mπ-continuous, but not
(1, 2)*-Mδπ-continuous function, since for the σ1, 2-closed sets
{b}, {b, c} of  Y, f -1({b}, {b, c}) = {a}, {a, c} are not (1, 2)*-
Mδπ-closed set in X.

Remark: From the above discussions, we have the following
table. The symbol “1” in a cell means that a function on the
corresponding row implies a function on the corresponding
column. Finally, the symbol “0” means that a function on the
corresponding row does not implies a function on the
corresponding column.

a. (1, 2)*-δ-continuous  b. (1, 2)*- πg-continuous  c. (1, 2)*-
πgα-continuous
d. (1, 2)*- πgαs-continuous e. (1, 2)*-Mδπ-continuous. f. (1, 2)*-
Mπ –continuous

Remark: The following examples show that (1, 2)*-Mδπ –
continuity is independent of (1, 2)*-continuity & (1, 2)*-gα-
continuity.

Example: Let X = {a, b, c, d} =Y, τ1 = {Φ, X, {a}, {d}, {a, d},
{a, c, d}}, τ2 = {Φ, X, {c, d}}, σ1 = {Φ, Y, {c}}, σ2 = {Φ, Y,
{b, c, d}}.  Define a function f: X→Y by f (a) =b, f (b) =a, f(c)
=c, f (d) = d. Then f is (1, 2)*-Mδπ-continuous function, but not
(1, 2)*-continuous and (1, 2)*-gα-continuous, because f-1{a, b,
d} = {a, b, d} is  Mδπ-closed set in X, but not τ 1, 2 –closed and
(1, 2)*-gα-closed set in X.

Example: Let X = {a, b, c} =Y, τ1 = {Φ, X, {a}, {a, b}}, τ2 =
{Φ, X, {b}, {a, c}}, σ1 = {Φ, Y, {b}}, σ2 = {Φ, Y, {b, c}}.
Define a function f: X→Y by f (a) = b, f (b) =a, f(c) =c. Then f
is (1, 2)*-continuous and (1, 2)*-gα-continuous, but not (1, 2)*-
Mδπ-continuous function.

Theorem: A function f: X→Y is (1, 2)*-Mδπ –continuous iff  f -

1(U) is (1, 2)*-Mδπ –open in X, for every σ1, 2 –open set in Y.
Proof. Let f  be an (1, 2)*-Mδπ –continuous function and U be
an σ1, 2 –open set in Y. Then

f -1(UC) is (1, 2)*-Mδπ –closed set in X. But f -1(UC) = [f -1(U)]C

and hence f -1(U) is  (1, 2)*-Mδπ –open in X. Conversely, f -1(U)
is (1, 2)*-Mδπ –open in X, for every σ 1, 2 –open set U in Y. UC

is σ1, 2 –closed set in Y. Then [f -1(U)]C is (1, 2)*-Mδπ –closed in
X. But [f -1(U)]C = f -1(UC)  and hence  f -1(UC) is (1, 2)*-Mδπ –
closed set in X. Therefore, f is (1, 2)*-Mδπ –continuous.

Theorem: Let f: X→Y and g: Y→Z  be two functions. Then

1. gof: X→Z  is (1, 2)*-Mδπ –continuous, if g is (1, 2)*-
continuous and f is (1, 2)*-Mδπ –continuous function.

2. gof: X→Z  is (1, 2)*-Mδπ –irresolute, if g is (1, 2)*- Mδπ
–irresolute and f is (1, 2)*-Mδπ –irresolute.

3. gof: X→Z  is (1, 2)*-Mδπ –continuous, if g is (1, 2)*-
Mδπ –continuous and f is (1, 2)*-Mδπ –irresolute.

Proof. The proof follows from the definitions.

Lemma: The product of two (1, 2)*- Mδπ –open sets is (1, 2)*-
Mδπ –open sets in the product space.

(1, 2)*-continuous
functions a b c d e f

a 1 1 1 1 0 0
b 0 1 1 1 0 0
c 0 0 1 1 0 0
d 0 0 0 1 0 0
e 0 1 1 1 1 1
f 0 1 1 1 0 1
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Proof. Let A and B be (1, 2)*- Mδπ –open sets of two space X
and Y respectively and V = A x B X x Y. Let F  V be a
(1, 2)*-πg-closed in X x Y, then there exists two (1, 2)*-πg-
closed sets F1  A, F2  B. So, F1 (1, 2)*-δint (A) and F2

 (1, 2)*-δint (B). Hence,  F1 x F2 A x B and  F1 x F2 
(1, 2)*-δint (A) x (1, 2)*-δint (B) = (1, 2)*-δint (A x B).
Therefore, A x B is (1, 2)*- Mδπ –open subset of a space X x Y.

Definition: A function f: X→Y is called (1, 2)*-δS-closed if the
image of  (1, 2)*-δ-closed set
in X is (1, 2)*-δ-closed set in Y.

Theorem: Let f: X→Y be (1, 2)*-continuous and (1, 2)*-δS-
closed. Then for every (1, 2)*-Mδπ –closed subset A of X, f (A)
is (1, 2)*-Mδπ –closed set in Y.

Proof. Let A be (1, 2)*-Mδπ –closed in X. Let f (A)  W,
where W is σ1, 2-open set in Y. Since A 

f -1(W) is τ1, 2-open set in X, f -1(W) is (1, 2)*-πg-open set in X.
Since A is (1, 2)*-Mδπ –closed set and f -1(W) is (1, 2)*-πg-
open set in X, then (1, 2)*-δcl (A)  f -1(W). Thus f ((1, 2)*-
δcl (A)) W. Hence, (1, 2)*-δcl (f (A))  f ((1, 2)*-δcl (A))
W, since f is (1, 2)*- δS-closed. Hence, f (A) is   (1, 2)*-Mδπ

–closed in Y.

Theorem: Let f: X→Y be a function. Then the following
statements are equivalent.

1. f  is (1, 2)*-Mδπ –irresolute function.

2. For Xx and any (1, 2)*-Mδπ –closed set V of  Y
containing f(x), thereexists an

(1, 2)*- Mδπ –closed set U such that Ux and f (U)
 V.

3. Inverse image of every (1, 2)*-Mδπ –open set of Y is (1,
2)*-Mδπ –open in X.

Proof. [1] → [2]: Let V be an (1, 2)*-Mδπ –closed set of Y and

Vxf )( . Since f is (1, 2)*-Mδπ –irresolute, f-1(V) is (1,

2)*- Mδπ –closed in X  and )(1 Vfx  . Put U = f-1(V).

Then, Ux and
f (U)  V.

[2] →[1]: Let V be an (1, 2)*- Mδπ –closed set of Y and

)(1 Vfx  . Then Vxf )( . Therefore, by [2],

thereexists an (1, 2)*- Mδπ –closed set Ux such that x Ux and
f (Ux)  V. Hence x  Ux f-1(V). This implies then, f-1(V)
is a union of (1, 2)*- Mδπ –closed sets of X. By Theorem 4.
1[10], f-1(V) is

(1, 2)*- Mδπ –closed set. The show that, f is (1, 2)*- Mδπ –
irresolute.

[2]↔[3]: It is Obvious.

Definition: A function f: X→Y  is called (1, 2)*-δ-irresolute  if
the inverse image of

(1, 2)*-δ-closed set in Y is (1, 2)*-δ-closed set in X.

Theorem: Let f: X→Y  be (1, 2)*- Mδπ –irresolute. Then f is
(1, 2)*-δ-irresolute if X is (1, 2)*-Tδπg-space.

Proof. Let V be a (1, 2)*-δ-closed subset of Y. Every (1, 2)*-δ-
closed set is (1, 2)*- Mδπ –closed and then V is (1, 2)*- Mδπ –
closed in Y. Since f is (1, 2)*- Mδπ –irresolute, then f -1(V) is
(1, 2)*- Mδπ –closed in X. Since X is (1, 2)*-Tδπg-space, then f-

1(V) is (1, 2)*-δ-closed set in X. Thus, f  is (1, 2)*-δ-irresolute.

Theorem: Let f: X→Y and g: Y→Z be two functions. Let Y be
(1, 2)*-Tδπg-space. Then gof is

(1, 2)*- Mδπ –continuous if g is (1, 2)*- Mδπ –continuous and f
is (1, 2)*- Mδπ –continuous.

Proof. The proof is obvious.

Theorem: Let f: X→Y be onto, (1, 2)*- Mδπ –irresolute and (1,
2)*-δ-irresolute. If X is a  (1, 2)*-Tδπg-space then Y is also a (1,
2)*-Tδπg-space

Proof. The proof is obvious.

Theorem: If f: X→Y is bijection, (1, 2)*-open and (1, 2)*- Mδπ
–continuous, then f is (1, 2)*- Mδπ –irresolute.

Proof. Let V be (1, 2)*- Mδπ –closed set in Y and let  f -1(V) 
U, where U is τ1, 2-open set in X. Since f is (1, 2)*-open, f(U)
is τ1, 2-open set in Y. Every τ1, 2-open set is (1, 2)*-πg-open set
and hence f (U) is

(1, 2)*-πg-open. Clearly, V f (U). Then (1, 2)*-δcl (V)  f
(U) and thus f -1((1, 2)*-δcl (V))  U. Since f   is (1, 2)*- Mδπ

–continuous and since (1, 2)*-δcl(V) is a σ1, 2-closed subset of
Y, then (1, 2)*-δcl(f -1(V))  (1, 2)*-δcl(f -1((1, 2)*-δcl(V))) =
f -1((1, 2)*-δcl(V))  U. U is τ1, 2-open set and hence  (1, 2)*-
πg-open set  in X. Thus we have (1, 2)*-δcl(f -1(V))  U
whenever f -1(V)  U and U is (1, 2)*-πg-open set in X. This
shows that f -1(V) is (1, 2)*- Mδπ –closed set in X. Hence f is (1,
2)*- Mδπ –irresolute.

Contra-(1, 2)*-Mδπ-Continuous Functions

Definition: 4. 1 A function f: X→Y  is called contra-(1, 2)*-
Mδπ-continuous if the inverse image of every σ1, 2-open set of Y
is (1, 2)*-Mδπ-closed set in X.

Example: Let X = {a, b, c} =Y with topologies τ1 = {Φ, X,
{b}}, τ2 = {Φ, X, {c}}, σ1= {Φ, Y, {a}}, σ2 = {Φ, Y, {a, c}}
and let f be an identity function. Clearly, f is contra-(1, 2)*-
Mδπ-continuous function.

Definition: A function f: X→Y  is called contra-(1, 2)*-Mδπ-
irresolute if the inverse image of (1, 2)*-Mδπ-open set in Y is
(1, 2)*-Mδπ-closed set in X.
Example: Let X = {a, b, c} =Y with topologies τ1 = {Φ, X,
{a}, {b, c}}, τ2 = {Φ, X, {a, b}, {c}}, σ1= {Φ, Y, {c}}, σ2 =
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{Φ, Y, {b}} and define a function f: X → Y  by f(a) = c, f(b) =
b,
f(c) = a. Then f is contra-(1, 2)*-Mδπ-irresolute function.

Remark: The family of all (1, 2)*-Mδπ-open sets is denoted by
(1, 2)*-Mδπ-O(X).

The set (1, 2)*-Mδπ-O(X, x) = {V Є (1, 2)*-Mδπ-O(X) / x Є V}
for x Є X.

Theorem: Let f: X → Y be a function. Then the following are
equivalent.

1. f is contra-(1, 2)*-Mδπ-continuous.
2. The inverse image of each σ1, 2-closed set in Y is (1,

2)*-Mδπ-open set in X.
3. For each x Є X and each F Є σ1, 2-C(Y, f(x)), there

exists U Є (1, 2)*-Mδπ-O(X, x) such that f (U)  F.

Proof. 1 => 2, 2 => 1 and 2=> 3 are obvious.
3=> 2. Let F be any σ1, 2-closed set of Y  and x Є f -1(F). Then
f(x) Є F and there exists Ux Є (1, 2)*-Mδπ-O(X, x) such that f

(Ux)  F. Hence we obtain f -1(F) =  {Ux / x Є f -1(F)} Є
(1, 2)*-Mδπ-O(X). Thus the inverse of each σ1, 2-closed set in Y
is (1, 2)*-Mδπ-open set in X.

Remark: The concepts of (1, 2)*-Mδπ-continuity and contra-(1,
2)*-Mδπ-continuity are independent as shown in the following
example.

Example: Let X = {a, b, c} =Y with topologies τ1 = {Φ, X,
{a}, {b, c}}, τ2 = {Φ, X, {a, b}, {c}}, σ1= {Φ, Y, {a}, {a, b}},
σ2 = {Φ, Y, {b}, {a, c}} respectively. Let f: X → Y be defined
by

f (a) = b, f (b) = c, f(c) = a. Clearly, f  is (1, 2)*-Mδπ-continuous
function, but f is not contra-(1, 2)*-Mδπ-continuous. Because, f-

1({a}) = {c} is not (1, 2)*-Mδπ-closed set in X, where {a} is σ1,

2-open set in Y

Example: Let X = {a, b, c} =Y with τ1 = {Φ, X, {a}}, τ2 = {Φ,
X, {c}}, σ1= {Φ, Y, {a, b}}, σ2 = {Φ, Y, {b}} respectively. Let
f: X → Y be an identity function. Clearly, f  is contra-(1, 2)*-
Mδπ-continuous function, but f is not (1, 2)*-Mδπ-continuous.
Because, f -1({c}, {a, c}) = {c}, {a, c} are not (1, 2)*-Mδπ-
closed set in X, where {c} and {a, c} are σ1, 2-open set in Y.

Theorem: A function f: X → Y is (1, 2)*-Mδπ-continuous if for
each  x ЄX  and each σ1, 2-open set V of  Y containing f(x),
there exists UЄ (1, 2)*-Mδπ-O(X, x) such that f(U)  V.

Theorem: If a function f: X→Y is contra-(1, 2)*-Mδπ-
continuous and Y is (1, 2)*-regular then f is (1, 2)*-Mδπ-
continuous.

Proof. Let x be an arbitrary point of X and V be an σ1, 2-open
set of Y containing f(x). Since Y is (1, 2)*-regular, there exists
an σ1, 2-open set W of Y containing f(x) such that σ1, 2-cl (W)
 V. Since f is contra-(1, 2)*-Mδπ-continuous, by Theorem 4.
6, there exists UЄ (1, 2)*-Mδπ-O(X, x) such that f (U)  σ1, 2-

cl (W). Then f (U)  σ1, 2-cl (W)  V. Hence by  Theorem
4. 10,  f  is
(1, 2)*-Mδπ-continuous function.

Definition: A function f: X→Y is called contra-(1, 2)*-δ-
continuous if the inverse image of every σ1, 2-open set of Y is
(1, 2)*-δ-closed set in X.

Theorem: Every contra-(1, 2)*-δ-continuous function is contra-
(1, 2)*-Mδπ-continuous function.

Proof. The proof follows from definitions.

Remark: The converse of the above theorem 4. 13 need not be
true as shown in the following example.

Example: Let X = {a, b, c, d} =Y with topologies τ1 = {Φ, X,
{a}, {d}, {a, d}, {a, c}, {a, c, d}}, τ2 = {Φ, X, {c, d}}, σ1= {Φ,
Y, {a}}, σ2 = {Φ, Y, {a, b, d}} respectively. Define f: X → Y
be a function f (a) = b, f (b) = a, f(c) = c, f (d) = d. Then, f  is
contra-(1, 2)*-Mδπ-continuous function, but not contra-(1, 2)*-
δ-continuous. Since, f-1({a, b, d}) = {a, b, d} is not (1, 2)*-δ-
closed set in X, where {a, b, d} is σ1, 2-open set in Y.

Definition: A function f: X→Y  is called

1. Contra-(1, 2)*- Mπ –continuous if the inverse image of
every σ1, 2-open set of Y is (1, 2)*- Mπ-closed set in X.

2. Contra-(1, 2)*- πg–continuous if the inverse image of
every σ1, 2-open set of Y is (1, 2)*- πg-closed set in X.

Theorem: Every contra-(1, 2)*-Mδπ-continuous function is
contra-(1, 2)*-Mπ-continuous function.

Proof. The proof is immediate.

Remark: The converse of the above theorem 4. 15 need not be
true as shown in the following example.

Example: Let X = {a, b, c} =Y with topologies τ1 = {Φ, X,
{a}}, τ2 = {Φ, X, {a, b}, {c}}, σ1= {Φ, Y, {c}}, σ2 = {Φ, Y, {b,
c}} respectively. Let f: X → Y be an identity function. Then, f
is contra-(1, 2)*-Mπ-continuous function, but not contra-(1,
2)*-Mδπ-continuous function. Since,

f-1({c}) = {c} is not (1, 2)*-Mδπ-closed set in X, where {c} is
σ1, 2-open set in Y

Theorem: Every contra-(1, 2)*-Mδπ-continuous function is
contra-(1, 2)*-πgα-continuous function.

Proof. The proof is clear.

Theorem: Every contra (1, 2)*-Mδπ-continuous function is
contra (1, 2)*-πg-continuous function.

Proof. The proof is obvious.

Remark: The converse of the theorems 4. 18 and 4. 19  need
not be true as shown the following example.
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Example: Let X = {a, b, c} =Y with topologies τ1 = {Φ, X,
{a}, {a, b}}, τ2 = {Φ, X, {b, c}}, σ1= {Φ, Y, {a}}, σ2 = {Φ, Y,
{a, c}} respectively. Let f: X → Y be an identity function.
Then, f  is neither contra-(1, 2)*- πg-continuous function  nor
contra-(1, 2)*-πgα-continuous, but not contra-
(1, 2)*-Mδπ-continuous function. Since, f-1({a}, {a, c}) = {a},
{a, c} is not (1, 2)*-Mδπ-closed set in X, where {a}, {a, c} are
σ1, 2-open set in Y

Theorem: Every contra-(1, 2)*-Mδπ-continuous function is
contra-(1, 2)*- πgαS -continuous function.

Proof. The proof follows from definitions.

Remark: The converse of the above theorem 4. 21 need not be
true as shown the following example.

Example: In Example 4. 17, f is contra-(1, 2)*-πgαS-
continuous, but not contra-(1, 2)*-Mδπ-continuous function.
Since, f-1({c}) = {c} is not (1, 2)*-Mδπ-closed set in X, where
{c} is σ1, 2-open set in Y

Remark: The concepts of contra-(1, 2)*-Mδπ-continuous and
contra-(1, 2)*-continuous functions are independent of each
other as shown in the following example.

Example: Let X = {a, b, c} =Y with topologies τ1 = {Φ, X,
{a}, {b, c}}, τ2 = {Φ, X, {a, b}, {c}}, σ1= {Φ, Y, {b}}, σ2 =
{Φ, Y, {b, c}} respectively. Let f: X → Y be an identity
function. Clearly, f  is contra-(1, 2)*-Mδπ-continuous function,
but not contra-(1, 2)*-continuous. Because,
f-1({b}) = {b} is not τ1, 2-closed set in X, where {c} is σ1, 2-open
set in Y

Example: Let X = {a, b, c} =Y with topologies τ1 = {Φ, X,
{b}, {a, b}}, τ2 = {Φ, X, {b, c}}, σ1= {Φ, Y, {a}}, σ2 = {Φ, Y,
{a, c}} respectively. Define a function f: X → Y by f(a) = c,
f(b) = b, f(c) = a. Then, f  is not contra-(1, 2)*-Mδπ-continuous
function, because,  f -1({a}, {a, c}) = {c}, {a, c} are  not  (1,
2)*-Mδπ-closed set in X, where {a}, {a, c} are σ1, 2-open set in
Y. However, f is contra-(1, 2)*-continuous.

Remark: The composition of two contra-(1, 2)*-Mδπ-
continuous functions need not be contra-(1, 2)*-Mδπ-continuous
as the following example shows.

Example: Let X = {a, b, c} =Y=Z with τ1 = {Φ, X, {a}, {a,
b}}, τ2 = {Φ, X, {b, c}, {c}}, σ1= {Φ, Y, {c}}, σ2 = {Φ, Y,
{b}} and η1= {Φ, Z, {a}}, η 2 = {Φ, Z, {a, c}}. Define a
function

f: X → Y by f(a) = c, f(b)  = b, f(c) = a and g: Y→Z be an
identity function. Then both f and g are contra-(1, 2)*-Mδπ-
continuous function, but gof is not contra-(1, 2)*-Mδπ-
continuous. Because, (gof)-1({a}, {a, c}) = {c}, {a, c} are not
(1, 2)*-Mδπ-closed set in X, where {a} and {a, c} are η1, 2-open
set in Y.

Theorem: If f: X→ Y is contra-(1, 2)*-Mδπ-continuous
function and g: Y→ Z  is a (1, 2)*-continuous function. Then
gof: X→ Z is contra-(1, 2)*-Mδπ-continuous.

Proof. The proof follows from the definitions.

Theorem: If f: X→ Y is (1, 2)*-Mδπ-irresolute function and g:
Y→ Z  is a contra-(1, 2)*-Mδπ-continuous function. Then gof:
X→ Z is contra-(1, 2)*-Mδπ-continuous.

Proof. The proof is obvious.

Theorem: Let f: X→ Y be a function then the following are
equivalent.

1. f  is contra-(1, 2)*-Mδπ-irresolute.
2. For xєX and any (1, 2)*-Mδπ-open set V of Y containing

f(x) thereexists an (1, 2)*-Mδπ-closed set U such that x Є
X and f (U)  V.

3. Inverse image of every (1, 2)*-Mδπ-closed set in Y is (1,
2)*-Mδπ-open in X.

Proof. 1 => 2. Let V be an (1, 2)*-Mδπ-open set in Y and f(x)
Є V. Since f is contra (1, 2)*-Mδπ-irresolute, f -1(V)  is (1, 2)*-
Mδπ-closed set in X and x Є f -1(V). Put U= f -1(V). Then x Є U
and

f (U)  V.
2=>1. Let V be an (1, 2)*-Mδπ-open set in Y and x Є f -1(V).
Then f(x) Є V. Hence by 2, thereexists an (1, 2)*-Mδπ-closed
set Ux such that x Є Ux and f (Ux)  V. Thus x Є Ux f -1

(V). This implies that f -1 (V) is a union of (1, 2)*-Mδπ-closed
sets of X. By Theorem 4. 1[10], f -1 (V) is (1, 2)*-Mδπ-closed
set of X. This shows that f is contra-(1, 2)*-Mδπ-irresolute.

1<=>3. Let  V  be an (1, 2)*-Mδπ-closed in Y. Then Y-V is (1,
2)*-Mδπ-open set in Y. Since f is contra (1, 2)*-Mδπ-irresolute. f
-1 (Y-V) is (1, 2)*-Mδπ-closed set in X. Also f -1 (Y-V) = X – f -

1(V). Therefore, X- f -1(V) is (1, 2)*-Mδπ-closed set in X.
Hence, f -1(V) is (1, 2)*-Mδπ-open set in X.

Remark: The concepts of contra-(1, 2)*-Mδπ-irresolute function
and (1, 2)*-Mδπ-irresolute function are independent of each
other as shown in the following example.

Example: Let X = {a, b, c, d} =Y with topologies τ1 = {Φ, X,
{a}, {a, b, d}}, τ2 = {Φ, X, {a, b}, {b}}, σ1= {Φ, Y, {a}}, σ2 =
{Φ, Y, {b}} respectively. Let f: X → Y be an identity function.
Clearly, f  is (1, 2)*-Mδπ-irresolute function, but  not contra-(1,
2)*-Mδπ-irresolute, because

f-1({a}, {b}, {a, b}) = {a}, {b}, {a, b} are not (1, 2)*-Mδπ-
closed set in X, where {a}, {b} and {a, b} are (1, 2)*-Mδπ-open
set in Y

Example: From Example 4. 4, f is contra-(1, 2)*-Mδπ-irresolute
function, but not (1, 2)*-Mδπ-irresolute, because, f-1({a}, {a, c})
= {c}, {a, c} are not (1, 2)*-Mδπ-closed set in X, where {a} and
{a, c}  are (1, 2)*-Mδπ-closed set in Y.

Theorem: Let f: X→ Y and g: Y → Z be any two functions
such that gof: X → Z,
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1. If f is contra-(1, 2)*-Mδπ-irresolute function and g is (1,
2)*-Mδπ-continuous function then gof is contra-(1, 2)*-
Mδπ-continuous.

2. If f is (1, 2)*-Mδπ-irresolute function and g is contra-(1,
2)*-Mδπ-irresolute function then gof is contra-(1, 2)*-
Mδπ-irresolute.

Proof. The proof follows from the definitions.
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