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The aim of this paper is to study some new generalization of continuous functions in bitopol ogical
space namely, (1, 2)*-Mg-continuous functions, (1, 2)*-Mg-irresolute functions, contra (1, 2)*-
Msr-continuous and contra (1, 2)*-Mg-irresolute functions. Also we investigate the relationships
between these functions and other existing functions in bitopological spaces.
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INTRODUCTION

Dontchev and Ganster [4] introduced 0-generalized closed set
in topological spaces. Balachandran et al [3] and Dontchev et
al [4] investigated generalized continuity, o-generalized
continuity, o6-generalized irresolute functions respectively.
Dontchev [5] obtained a new notion of continuous functions
called contra-continuous functions in the recent past. Lellis
Thivagar [12] have developed the concepts of (1, 2)*-semi-
generalized continuous functions in bitopological spaces.
Recently Arockiarani and Mohana[2, 7] discussed (1, 2)*-rga-
continuous and contra (1, 2)*-ngo-continuous functions in
bitopological spaces. In this paper, we study the notion of new
class of functions called (1, 2)*- Mg;-continuous functions and
(1, 2)*- Mg -irresolute functions in Bitopological space. Also
we introduce few types of generalizations of contra-functions
caled contra (1, 2)*-Mg-continuous, contra (1, 2)*-Mg;-
irresolute functions. Further, We discuss some properties of
these functions in bitopological spaces.

Preliminaries

Throughout this paper the spaces X and Y represent non-empty
bitopological spaces on which no separation axioms are

*Corresponding author: Mohana K

assumed, unless otherwise mentioned. We recall the following
definitions and results which are useful in the sequel.

Definition: [6] A subset S of a bitopological space X is said
to be 14 ,-open if

S=AUB where Aet | and Bet 5.A subset Sof X issaid to

be (i) 14, o-closed if the complement of S is Ty ,-open. (ii) Ty, »-
clopen if S is both 1, ,-open and 1, ,-closed.

Definition: [6] Let S be asubset of the bitopological space X.
Then the 1, ,-interior of S denoted by Ty, ,-int(S) is defined by
U{G: GcSand Gis Tty ,-open} and the 1, ,-closure of S
denoted by 1, ,-cl(S) is defined by N{F: ScCFand Fis 1y »-
closed}.

The family of all 1, ,-closed sets of X will be denoted by 1y, ,-
C(X).

The set 1y, -C(X, X) ={V €T, ,-C(X) / x € V} for x € X,
Definition: A subset A of a bitopological space X iscalled

1. (1, 2)*-regular open [6] if A=Ty »-int (Ty, 2-Cl (A)).
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2. (1, 2)*-a -open [6] if A C 1 z'int (qu 2-C| (le z'int

(A).
3. (1, 2*-semi-open [6] if A =Ty o-Cl (Tq, 2-iNt(A))

The complement of the sets mentioned from (1) to (3) are
called their respective closed sets.

Definition: [2] Let S be a subset of the bitopological space X.
Then

e The (1, 2)*-a-interior of Sdenoted by (1, 2)*-a-int(S) is
defined by
U{G: Gc Sand Gis(1, 2)*-a-open}.
e The (1, 2)*-a-closure of S denoted by (1,2)*-a-cl (S) is
defined by
N{F: ScFand Fis(1, 2)*-a-closed}.

Definition: [10] The (1, 2)*-6-interior of a subset A of X isthe
union of all (1, 2)*-regular open set of X contained in A and is
denoted by (1, 2)*-6-int (A). The subset A is called (1, 2)*-6-
openif A = (1, 2)*-6-int (A), (i. €), asetis(1, 2)*-6-openifitis
the union of (1, 2)*-regular open sets. The complement of a (1,
2)*-6-open set is called (1, 2)*-d-closed. Alternatively, a subset
A in X iscaled (1, 2)*-d-closed if A = (1, 2)*-0-cl (A), where
(1, 2)*-8-cl (A) ={x€X: 1y, »int (11, ¢l (U)) n A=f ,U €
Ty, and x € U}.

Definition: A subset A of abitopological space X is called

1. (1, 2)*-nga - closed [1] if (1, 2)*-acl (A) c U
whenever Ac U and U is T4, »-Ti-open.

2. (1, 2)*-ng- closed [8] if T4, -l (A) < U whenever A
U and U is 1y, ,- m-open.

3. (1, 2)*- strongly- mga - closed [9] if (1, 2)*-acl (A) <
U whenever A U and U is (1, 2)*-ng-open.

4. (1, 2)*-go-closed [6] if (1, 2)*-acl (A) A
whenever Ac U and U is (1, 2)*-a-openin X.

5. (1, 2)*-Mg;-closed set [10] if (1, 2)*-dcl (A) c U
whenever AcC U and U is (1, 2)*-ng-openin X.

and the complement of the sets mentioned from (1) to (5) are
called their respective open sets.

Definition: A functionf: X - Y is called

1. (1, 2)*-ng-continuous [8] if the inverse image of every
01 »-closed set of Y is (1, 2)*-ng-closed set in X.

2. (1, 2*-nga-continuous [2] if the inverse image of every
01, »-closed set of Y is (1, 2)*-nga-closed in X.

3. (1, 2)*-mga®-continuous [11] if the inverse image of
every 0y ,-closed set of Y is (1, 2)*-strongly-nga-closed
inX.

4. (1, 2)*-ga-continuous if the inverse image of every 0, »-
closed set of Y is (1, 2)*-ga-closed in X.

5. Contra (1, 2)*-nga-continuous [7] if the inverse image
of every 0, ,-open set of Y is (1, 2)*-nga-closed in X.

6. Contra (1, 2)*- continuous [7] if the inverse image of
every g, ,-open set of Y is 1y, ,-closed in X.

7. Contra (1, 2)*-nga>-continuous [11] if the inverse image
of every 05 »-open set of Y is (1, 2)*-strongly-nga-
closedin X.

Definition: [10] A space X is caled (1, 2)*-Tsg-Space if every
(1, 2)*-Mg-closed setinit isan (1, 2)*-d-closed.

(1, 2)*-M g-Continuous Functions

Definition: A function f: XY is called (1, 2)*-Mg-
continuous if the inverse image of
every g, ,-closed setinY is (1, 2)*-Mg-closed set in X.

Example: Let X = {a, b, c} =Y with topologies 1; = {®, X,
{a} {a b}}, . = {®, X, {b}, {a, c}}, 0:= {®, Y, {b}} 02> =
{®, Y, {a, c}} and let f be the identity map. Clearly, f is (1,
2)*-M,-continuous.

Definition: A functionf: X - Y is called (1, 2)*-Mg.-irresolute
if the inverse image of (1, 2)*-Mgs,-closed set in Y is (1, 2)*-
Ms-closed set in X.

Example: Let X = {a, b, ¢, d} =Y with 1, = {®, X, {a}, {a, b,
di}, 2 = {®, X, {a, b}, {b}}, 0:={®, Y, {a}}, 0.={®, Y,
{b}} and let f be the identity map. Clearly, f is (1, 2)*-Mgy;-
irresolute functions.

Definition: A function f: X - Y is called (1, 2)*-6-continuous
if the inverse image of every 0, ,-closed set of Y is (1, 2)*-6-
closed in X.

Theorem: Every (1, 2)*-d-continuous function is (1, 2)*-Mg;-
continuous function.

Proof. The proof is obvious, since every (1, 2)*-0-closed set is
(1, 2)*-Mg;-closed set.

Remark: The converse of the above theorem is not true in
general as shown in the following example.

Example: Let X ={a, b, ¢, d}=Y with 1, = {®, X, {a}, {d}, {a,
d}}v L= {CD, X! {d}, {a! d}, {C! d}, {a! C, d}}, 01= {CD, Y, {a},
{a, b, d}}, 0, ={®d, Y, {b}, {a, b}}. Define a function f: X - Y
byf (@ =af(b)=c f(c)=b,f(d) =d. Thenfis (1, 2)*-Mg-
continuous function, but not (1, 2)*-6-continuous function,
sincef ({a, ¢, d}) ={a b, d} isnot (1, 2)*-3-closed set in X,
for

01 -Closedset{a, c, d} inY.

Theorem: Every (1, 2)*-Mg-continuous function is (1, 2)*-ng-
continuous function.

Proof. It is true that, every (1, 2)*- Mg-closed set is (1, 2)*-
ng-closed set.

Remark: The converse of the above theorem need not be true
as shown in the following example.

Example: Let X ={a, b, ¢} =Y with 1, = {®, X, {b}, {a,c}}, T»
={®. X, {a}, {a, b}},
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o, ={d, Y, {a}}, o, ={d, Y, {a c}} and let f: XY be an
identity function. Then f is not

(1, 2)*-Mg-continuous function, because f *({b, ¢}) = {b, c} is
not (1, 2)*- Mg -closed set in X, for 0, ,-closed set {b, ¢} inY.
However, f is (1, 2)*- ng-continuous.

Theorem: Every (1, 2)*-Mg-continuous function is (1, 2)*-
nga-continuous function.

Proof. The proof isimmediate, since every (1, 2)*- Ms,-closed
setis (1, 2)*- mgo-closed set.

Remark: The converse of the Theorem 3. 12 need not be true
as shown in the following example.

Example: Let X = {a, b, c} =Y with 1, = {®, X, {b}, {a, b}},
T ={®, X, {b, c}},

01 = {®, Y, {b}}, 0, = {P, Y, {c}} and let f: XY be an
identity function. Then f is (1, 2)*- nga-continuous, but not
(1, 2)*-Msg-continuous function, since for the o, ,-closed sets

{a}, {a c}, {a b} of Y, f'({a},{a c} {ahb}) ={a}, {ac},
{a, b} arenot (1, 2)*- Ms-closed set in X.

Theorem: Every (1, 2)*-Mg-continuous function is (1, 2)*-
ngoS-continuous function.

Proof. The proof is clear, since every (1, 2)*- Mg -closed set
is(1, 2)*- strongly-nigo-closed set.

Remark: The converse of the Theorem 3. 15 need not be true
as shown in the following example.

Example: Let X = {a, b, ¢} =Y with 1, = {®, X, {b}, {b, c}},
L= {CD, X, {ar b}},

0. ={d, Y, {a}}, 0, = {d, Y, {a, c}}. Define a function f:
XY by f(a)=b, f(b)=a, f(c)=c. Then f is (1, 2)*- mgo®
continuous, but not (1, 2)*-Mg,-continuous function, since for
the 0, ,-closed sets{b}, {b, ¢} of Y, f({b},{b,c}) ={a},{a
¢} are not (1, 2)*- Mg,-closed set in X.

Definition: A subset A of a bitopological space X iscaled (1,
2)*-My-closed set if 14, -l (A) < U whenever AcU and U is
(1, 2)*-ng-openin X.

Remark: Every (1, 2)*-Mg; —closed set is (1, 2)*-M-closed set,
but not conversely.

Theorem: Every (1, 2)*-Mg,-continuous function is (1, 2)*- M
-continuous function.

Proof. By Remark 3. 19, the proof isclear.

Remark: The converse of the Theorem 3. 20 need not be true
as shown in the following example.

Example: In example 3. 17, f is (1, 2)*- M -continuous, but not
(1, 2)*-Mg-continuous function, since for the o, ,-closed sets
{b},{b, c} of Y, f{b},{b,c})={a},{a c} arenot (1, 2)*-
Mg -closed set in X.

Remark: From the above discussions, we have the following
table. The symbol “1” in a cell means that a function on the
corresponding row implies a function on the corresponding
column. Finally, the symbol “0” means that a function on the
corresponding row does not implies a function on the
corresponding column.

a. (1, 2)*-d-continuous b. (1, 2)*- mg-continuous c. (1, 2)*-
Tga-continuous
d. (1, 2)*- ngo®-continuous e. (1, 2)*-Mg,-continuous. f. (1, 2)*-
M —continuous

(1, 2)*-continuous

functions a b c d e f
a 11 1 1 0 0
b 0 1 1 1 0 O
c 0O 0 1 1 0 O
d 0 0 01 0 O
e 0O 1 1 1 1 1
f 0O 1 1 1 0 1

Remark: The following examples show that (1, 2)*-Mg, —
continuity is independent of (1, 2)*-continuity & (1, 2)*-ga-
continuity.

Example: Let X ={a, b, ¢, d} =Y, 1. = {®, X, {a}, {d}, {a, d},
{a, C, d}}v = {q)! X! {C! d}}, 01 = {q)! Y! {C}}v 02 = {(D, Y,
{b, c,d}}. Defineafunctionf: X - Y by f (a) =b, f (b) =a, f(c)
=c, f (d) =d. Then f is (1, 2)*-Mg,-continuous function, but not
(1, 2)*-continuous and (1, 2)*-ga-continuous, because f*{a, b,
d} ={a b, d} is Mg-closed set in X, but not T ; , —closed and
(1, 2)*-ga-closed set in X.

Example: Let X = {a, b, c} =Y, 1, = {®, X, {a}, {a, b}}, 1o =
{®, X, {b}, {a, c}}, 01 = {®, Y, {b}}, 02 = {®, Y, {b, c}}.
Define afunction f: X - Y by f (@) = b, f (b) =a, f(c) =c. Then f
is (1, 2)*-continuous and (1, 2)*-ga-continuous, but not (1, 2)*-
M s.-continuous function.

Theorem: A functionf: X - Y is (1, 2)*-Mg, —continuous iff f~
Y(U) is (1, 2)*-Ms; —open in X, for every o, , —open setinY.
Proof. Letf bean (1, 2)*-Mg, —continuous function and U be
an g, ,—opensetinY. Then

f 1(U°) is (1, 2)*-Mg; —closed set in X. But f (U®) = [f Y(U)]©
and hence f (V) is (1, 2)*-My; —openin X. Conversely, f *(U)
is (1, 2)*-Mg, —open in X, for every o ; ,—openset U inY. U®
is 0, ,—closed setin Y. Then [f (U)]is (1, 2)*-Ms, —closed in
X. But [f {(U)]€ =f {(U) and hence f (U is (1, 2)*-Mg; —
closed set in X. Therefore, f is (1, 2)*-Mg, —continuous.

Theorem: Letf: X - Y and g: Y - Z be two functions. Then

1. gof: X-2Z is (1, 2)*-Mg; —continuous, if gis (1, 2)*-
continuous and f is (1, 2)*-Mg, —continuous function.

2. gof: X = Z is (1, 2)*-Ms; —irresolute, if gis (1, 2)*- Mg,
—irresolute and f is (1, 2)*-Mj, —irresolute.

3. gof: X Z is (1, 2)*-Ms; —continuous, if g is (1, 2)*-
Mg —continuous and f is (1, 2)*-Mg, —irresolute.

Proof. The proof follows from the definitions.

Lemma: The product of two (1, 2)*- Mg, —open setsis (1, 2)*-
Ms: —open sets in the product space.
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Proof. Let A and B be (1, 2)*- Mg, —0open sets of two space X
and Y respectivelyandV=AxB CXxY.LetF C V bea
(1, 2)*-ng-closed in X x Y, then there exists two (1, 2)*-ng-
closed setsF, & A, F, & B. So, F;C (1, 2)*-dint (A) and F,
C (1, 2)*-dint (B). Hence, Fi x F,C AxBand FixF, &
(1, 2)*-dint (A) x (1, 2)*-dint (B) = (1, 2)*-dint (A x B).
Therefore, A x B is (1, 2)*- Mg, —open subset of aspace X x Y.

Definition: A function f: X - Y is called (1, 2)*-6°-closed if the
image of (1, 2)*-6-closed set
inXis(1, 2)*-d-closed setinY.

Theorem: Let f: X - Y be (1, 2)*-continuous and (1, 2)*-5°
closed. Then for every (1, 2)*-Ms, —closed subset A of X, f (A)
is(1, 2)*-Ms; —closed setinY.

Proof. Let A be (1, 2)*-Ms; —closed in X. Let f (A) € W,
where W is 01 ,-opensetinY. SinceA C

f (W) is 1, ,-open setin X, f (W) is (1, 2)*-ng-open set in X.
Since A is (1, 2)*-Mg, —closed set and f (W) is (1, 2)*-ng-
open set in X, then (1, 2)*-8cl (A) Cf (W). Thus f ((1, 2)*-
dcl (A)) S W. Hence, (1, 2)*-écl (f (A)) <1 ((1, 2)*-acl (A))
C W, sincefis (1, 2)*- 5°-closed. Hence, f (A) is (1, 2)*-Mgy
—closed inY.

Theorem: Let f: XY be a function. Then the following
statements are equivalent.

1. f is(1, 2)*-Mg, —irresolute function.

2. For X€ X andany (1, 2)*-My; —closed set VV of Y
containing f(x), thereexists an

(1, 2)*- Mg, —closed set U such that X € U and f (U)
C V.

3. Inverseimage of every (1, 2)*-My; —open set of Y is (1,
2)*-Mg; —openin X.

Proof. [1] - [2]: Let V be an (1, 2)*-M;; —closed set of Y and
f(X) eV . since f is (1, 2)*-Mg, —irresolute, fX(V) is (1,
2)*- Mg —closed in X and X f (V). Put U = £(v).
Then, XeU and

f(U) C V.

[2] -[1]: Let V be an (1, 2)*- My, —closed set of Y and

xe f*(V). Then f(X)eV. Therefore, by [2],

thereexists an (1, 2)*- Mg, —closed set U, such that x € U, and
f (Uy) C V.Hencex € U, f%(V). Thisimpliesthen, f(V)
is a union of (1, 2)*- Mg, —closed sets of X. By Theorem 4.
1[10], fY(V) is

(1, 2)*- Mg, —closed set. The show that, f is (1, 2)*- Ms; —
irresolute.

[2] - [3]: It is Obvious.

Definition: A function f: X - Y is called (1, 2)*-é-irresolute if
the inverse image of

(1, 2)*-6-closed set in Y is (1, 2)*-6-closed set in X.

Theorem: Let f: XY be (1, 2)*- Mg, —irresolute. Then f is
(1, 2)*-d-irresolute if X is (1, 2)*-T sg-Space.

Proof. Let V be a (1, 2)*-3-closed subset of Y. Every (1, 2)*-0-
closed set is (1, 2)*- Mg, —closed and then V is (1, 2)*- Mg, —
closed in Y. Since f is (1, 2)*- My, —irresolute, then f (V) is
(1, 2)*- Mg —closed in X. Since X is (1, 2)*-Tsqg-Space, then f°
Y(V)is (1, 2)*-d-closed set in X. Thus, f is (1, 2)*-3-irresolute.

Theorem: Letf: X - Y and g: Y - Z be two functions. Let Y be
(1, 2)*-Tsng-space. Then gof is

(1, 2)*- Mg, —continuous if g is (1, 2)*- Mg, —continuous and f
is(1, 2)*- Mg, —continuous.

Proof. The proof is obvious.

Theorem: Let f: X - Y be onto, (1, 2)*- Mg, —irresolute and (1,
2)*-6-irresolute. If X isa (1, 2)*-Tsg-Spacethen Y isalso a(l,
2)*-Tong-space

Proof. The proof is obvious.

Theorem: If f: X 5 Y is bijection, (1, 2)*-open and (1, 2)*- Mg,
—continuous, then f is (1, 2)*- Mg, —irresolute.

Proof. Let V be (1, 2)*- Mg, —closed set in Y and let f (V) <
U, where U is 1y, -open set in X. Since f is (1, 2)*-open, f(U)
is Ty p-open set in Y. Every 1y ,-open set is (1, 2)*-ng-open set
and hencef (U) is

(1, 2)*-ng-open. Clearly, V cf (U). Then (1, 2)*-dcl (V) cf
(U) and thus f "Y((1, 2)*-8cl (V)) < U. Sincef is(1, 2)*- Mg,
—continuous and since (1, 2)*-4cl(V) is a 0y, ,-closed subset of
Y, then (1, 2)*-8cl(f (V) < (1, 2)*-3cl(f ((1, 2)*-3cl(V))) =
f (1, 2)*-8cl(V)) < U. U is 1y, ,-open set and hence (1, 2)*-
ng-open set in X. Thus we have (1, 2)*-3cl(f (V)) < U
whenever f %(V) < U and U is (1, 2)*-ng-open set in X. This
shows that f (V) is (1, 2)*- Mg, —closed set in X. Hence f is (1,
2)*- Mg, —irresolute.

Contra-(1, 2)*-Ms,-Continuous Functions

Definition: 4. 1 A function f: X - Y s called contra-(1, 2)*-
Mar-continuous if the inverse image of every 0, ,-open set of Y
is(1, 2)*-Mg-closed set in X.

Example: Let X = {a, b, c} =Y with topologies 1; = {®, X,
{b}}, T2 = {®, X, {c}}, 0:= {®, Y, {a}}, 0= {®, Y, {a, c}}
and let f be an identity function. Clearly, f is contra-(1, 2)*-
M s.-continuous function.

Definition: A function f: X - Y is called contra-(1, 2)*-Mg;-
irresolute if the inverse image of (1, 2)*-Mg-open set in Y is
(1, 2)*-Mg-closed set in X.

Example: Let X = {a, b, ¢} =Y with topologies 1; = {®, X,
{a}, {b! C}}, L= {(D, X! {av b}! {C}}1 01= {q)! Y, {C}}v 02 =
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{®, Y, {b}} and define a function f: X - Y by f(a) = ¢, f(b) =
bl
f(c) =a Thenf is contra-(1, 2)*-Mgy-irresolute function.

Remark: The family of all (1, 2)*-Mg;-open sets is denoted by
(1, 2)*-Mgr-O(X).

The set (1, 2)*-Mg-O(X, X) = {V € (1, 2)*-M;-O(X) / x € V}
forx € X.

Theorem: Let f: X - Y be a function. Then the following are
equivalent.

1. fiscontra-(1, 2)*-Mg-continuous.

2. The inverse image of each 0, ,-closed setinY is(1,
2)*-Mg-open set in X.

3. Foreachx € X and each F € g1 ,-C(Y, f(X)), there
exists U € (1, 2)*-M-O(X, x) such that f (U) C F.

Proof. 1=>2,2=>1and 2=> 3 are obvious.
3=> 2. Let F be any o, »-closed set of Y and x € f "(F). Then
f(x) € F and there exists Uy € (1, 2)*-Mg-O(X, X) such that f

(U) C F. Hence we obtain f %(F) = U {U,/x € fXF)} €
(1, 2)*-Mgr-O(X). Thus the inverse of each g, ,-closed setin' Y
is(1, 2)*-Ms-open setin X.

Remark: The concepts of (1, 2)*-Mg,-continuity and contra-(1,
2)*-Mgz-continuity are independent as shown in the following
example.

Example: Let X = {a, b, c} =Y with topologies 1, = {®, X,
{a}, {b, c}}, . = {®, X, {a, b}, {c}}, 0= {®, Y, {a}, {a, b}},
0,={®, Y, {b}, {a, c}} respectively. Let f: X - Y be defined
by

f(@=hb,f(b)=c,f(c)=a Clearly, f is(1, 2)*-Ms-continuous
function, but f is not contra-(1, 2)*-Mg,;-continuous. Because, f
'{a}) = {c} isnot (1, 2)*-Mg-closed set in X, where {a} is 0y,
ropensetinY

Example: Let X ={a, b, c} =Y with t; = {®, X, {a}}, 1. = {®,
X, {c}}, 0.={D, Y, {a, b}}, 0,={D, Y, {b}} respectively. Let
f: X - Y be an identity function. Clearly, f is contra-(1, 2)*-
Msr-continuous function, but f is not (1, 2)*-Mg.-continuous.
Because, f Y({c}, {a c}) = {c}, {a c} are not (1, 2)*-Mg-
closed set in X, where {c} and {a, c} are 0, -opensetinY.

Theorem: A function f: X - Y is (1, 2)*-Mg,-continuous if for
each x €X and each 0, ,-open set V of Y containing f(x),
there exists UE (1, 2)*-Mg-O(X, x) such that f(U) C V.

Theorem: If a function f: X-Y is contra-(1, 2)*-Mg-
continuous and Y is (1, 2)*-regular then f is (1, 2)*-Mg-
continuous.

Proof. Let x be an arbitrary point of X and V be an g, ,-open
set of Y containing f(x). Since Y is (1, 2)*-regular, there exists
an 0y »-open set W of Y containing f(x) such that o, ,-cl (W)
C V. Sincef iscontra-(1, 2)*-Mg,-continuous, by Theorem 4.
6, there exists UE (1, 2)*-Mg-O(X, X) such that f (U) C 0y, »-

c (W). Thenf (U) C 0y, ,-cl (W) C V. Henceby Theorem
4.10, f is
(1, 2)*-Mg,-continuous function.

Definition: A function f: XY is called contra-(1, 2)*-6-
continuous if the inverse image of every g, ,-open set of Y is
(1, 2)*-6-closed set in X.

Theorem: Every contra-(1, 2)*-6-continuous function is contra-
(1, 2)*-Mg,-continuous function.

Proof. The proof follows from definitions.

Remark: The converse of the above theorem 4. 13 need not be
true as shown in the following example.

Example: Let X = {a, b, ¢, d} =Y with topologies 1, = {®, X,
{a}, {d}, {a d}, {a c}, {a c, d}}, . = {®, X, {c, d}}, 0:= {O,
Y, {a}}, 0,={®, Y, {a, b, d}} respectively. Define f: X - Y
be afunctionf (a) = b, f (b) =4 f(c) =c, f (d) =d. Then, f is
contra-(1, 2)*-Ms;-continuous function, but not contra-(1, 2)*-
3-continuous. Since, f*({a, b, d}) = {a b, d} is not (1, 2)*-5-
closed set in X, where {a, b, d} is 0; ,-open setinY.

Definition: A functionf: X - Y is called
1. Contra-(1, 2)*- M, —continuous if the inverse image of
every g, ,-open set of Y is(1, 2)*- My-closed setin X.
2. Contra-(1, 2)*- ng—continuous if the inverse image of
every g, ,-open set of Y is (1, 2)*- ng-closed set in X.

Theorem: Every contra-(1, 2)*-Mg-continuous function is
contra-(1, 2)*-M-continuous function.

Proof. The proof isimmediate.

Remark: The converse of the above theorem 4. 15 need not be
true as shown in the following example.

Example: Let X = {a, b, c} =Y with topologies 1; = {®, X,
{a}} o={®, X, {a b}, {c}}, 0:={®, Y, {c}}, 0.={®, Y, {b,
c}} respectively. Let f: X — Y be an identity function. Then, f
is contra-(1, 2)*-M-continuous function, but not contra-(1,
2)*-Mgz-continuous function. Since,

f2({c}) = {c} isnot (1, 2)*-Mgs-closed set in X, where {c} is
01 -opensetinY

Theorem: Every contra-(1, 2)*-Mg-continuous function is
contra-(1, 2)*-nga-continuous function.

Proof. The proof is clear.

Theorem: Every contra (1, 2)*-Mg.-continuous function is
contra (1, 2)*-ng-continuous function.

Proof. The proof is obvious.

Remark: The converse of the theorems 4. 18 and 4. 19 need
not be true as shown the following example.
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Example: Let X = {a, b, c} =Y with topologies 1, = {®, X,
{a}, {a, b}}, . ={®, X, {b, c}}, 0= {D, Y, {a}}, 0, ={D, Y,
{a, c}} respectively. Let f: X - Y be an identity function.
Then, f is neither contra-(1, 2)*- ng-continuous function nor
contra-(1, 2)*-nga-continuous, but not contra-

(1, 2)*-Mg-continuous function. Since, f*({a}, {a, c}) = {a},
{a, ¢} isnot (1, 2)*-Mg-closed set in X, where {a}, {a, c} are
0y, -opensetinyY

Theorem: Every contra-(1, 2)*-Mg-continuous function is
contra-(1, 2)*- nga® -continuous function.

Proof. The proof follows from definitions.

Remark: The converse of the above theorem 4. 21 need not be
true as shown the following example.

Example: In Example 4. 17, f is contra(1, 2)*-nga®-
continuous, but not contra-(1, 2)*-Mg,-continuous function.
Since, f1({c}) = {c} is not (1, 2)*-Mg-closed set in X, where
{c}is oy -opensetinyY

Remark: The concepts of contra-(1, 2)*-Mg,-continuous and
contra-(1, 2)*-continuous functions are independent of each
other as shown in the following example.

Example: Let X = {a, b, ¢} =Y with topologies 1, = {®, X,
{a}! {b, C}}v L= {(D, X! {av b}1 {C}}, 01= {(Dv Y, {b}}a 02 =
{®, Y, {b, c}} respectively. Let f. X - Y be an identity
function. Clearly, f is contra-(1, 2)*-Mg-continuous function,
but not contra-(1, 2)* -continuous. Because,

1({b}) = {b} is not 1, ,-closed set in X, where {c} is o, ,-open
setinY

Example: Let X = {a, b, c} =Y with topologies 1, = {®, X,
{b}, {a, b}}, . = {D, X, {b, c}}, 0= {®, Y, {a}}, .= {D, Y,
{a, c}} respectively. Define a function f: X - Y by f(a) = c,
f(b) = b, f(c) = a Then, f is not contra-(1, 2)*-Ms,-continuous
function, because, f *({a}, {a c}) = {c}, {a c} are not (1,
2)*-Msr-closed set in X, where {a}, {a, c} are 0, ,-open set in
Y. However, f is contra-(1, 2)*-continuous.

Remark: The composition of two contra-(1, 2)*-Mg,-
continuous functions need not be contra-(1, 2)*-Mg,-continuous
as the following example shows.

Example: Let X = {a, b, c} =Y=Z with 1; = {®, X, {a}, {a,
b}}, 2 = {®, X, {b, c}, {c}}, 0= {®, Y, {c}}, 02={D, Y,
{b}} and n;= {®, Z, {a}}, n > = {®, Z {a, c}}. Define a
function

f. X - Ybyf@) =c, f(b) =b, f(c) =aand g: Y-Z be an
identity function. Then both f and g are contra-(1, 2)*-Mg;-
continuous function, but gof is not contra(1, 2)*-Mg;-
continuous. Because, (gof)*({a}, {a, c}) = {c}, {a, c} are not
(1, 2)*-Mgr-closed set in X, where {a} and {a, c} are n, ,-open
setin.

Theorem: If f: X- Y is contra-(1, 2)*-Mgy,-continuous
functionand g: Y —» Z is a (1, 2)*-continuous function. Then
gof: X - Z is contra-(1, 2)*-Mg;-continuous.

Proof. The proof follows from the definitions.

Theorem: If f: X - Y is (1, 2)*-Mg-irresolute function and g:
Y - Z is a contra-(1, 2)*-Mg,-continuous function. Then gof:
X - Zis contra-(1, 2)*-Mg,-continuous.

Proof. The proof is obvious.

Theorem: Let f: X - Y be a function then the following are
equivalent.

1. f iscontra-(1, 2)*-Mg-irresolute.

2. For xeX and any (1, 2)*-Mg;-open set V of Y containing
f(x) thereexists an (1, 2)*-Mg,-closed set U such that x €
Xandf (U) C V.

3. Inverseimage of every (1, 2)*-Mg-closed set in Y is (1,
2)*-Mg-openin X.

Proof. 1=>2. LetV bean (1, 2)*-Ms-open setin'Y and f(x)
€ V. Since f is contra (1, 2)*-Mgr-irresolute, f (V) is (1, 2)*-
Msz-closed set in X and x € f (V). Put U= f (V). Thenx € U
and

f(U) C V.

2=>1. Let V be an (1, 2)*-Mg-open set in Y and x € f (V).
Then f(x) € V. Hence by 2, thereexists an (1, 2)*-Mg,-closed
set U, such that x € Uy and f (U,) < V. Thusx € U,C
(V). This implies that f ™ (V) is a union of (1, 2)*-Mg,-closed
sets of X. By Theorem 4. 1[10], f (V) is (1, 2)*-Mg;-closed
set of X. Thisshowsthat f is contra-(1, 2)*-Mg-irresolute.

1<=>3. Let V bean (1, 2)*-Mg-closedin Y. Then Y-V is (1,
2)*-Mg-open set in Y. Since f iscontra (1, 2)*-Mg-irresolute.
TY-V)is (1, 2)*-Mg-closed setin X. Also f 2(Y-V) = X - f~
YV). Therefore, X- f (V) is (1, 2)*-Mg-closed set in X.
Hence, f (V) is (1, 2)*-Mg-open set in X.

Remark: The concepts of contra-(1, 2)*-Mg.-irresolute function
and (1, 2)*-Ms-irresolute function are independent of each
other as shown in the following example.

Example: Let X ={a, b, ¢, d} =Y with topologies 1, = {®, X,
{a} {a, b, d}}, 2 = {®, X, {a, b}, {b}}, 0:= {®, Y, {a}}, 0> =
{D, Y, {b}} respectively. Let f: X - Y be an identity function.
Clearly, f is (1, 2)*-Mg-irresolute function, but not contra-(1,
2)*-Mgg-irresolute, because

fi{a, {b}, {a b}) = {a}, {b}, {& b} are not (1, 2)*-My-
closed set in X, where {a}, {b} and {a, b} are (1, 2)*-Ms-open
setinyY

Example: From Example 4. 4, f is contra-(1, 2)*-Mg.-irresolute
function, but not (1, 2)*-Mg-irresolute, because, f*({a}, {a, c})
={c}, {a c} arenot (1, 2)*-M,-closed set in X, where {a} and
{a c} are(l, 2)*-Mg-closedsetinY.

Theorem: Let f: X~ Y and g: Y — Z be any two functions
such that gof: X - Z,

8513 |Page



International Journal of Recent Scientific Research Vol. 7, Issue, 1, pp. 8508-8514, January, 2016

1. Iffiscontra-(1, 2)*-Mg-irresolute function and g is (1, 5.
2)* -Mgz-continuous function then gof is contra-(1, 2)*-

M s-continuous.

2. Iffis(1, 2)*-Mg-irresolute function and g is contra-(1, 6.
2)*-Mgq-irresolute function then gof is contra-(1, 2)*-
Mq-irresolute.

Proof. The proof follows from the definitions. 7.
References

1. Arockiarani. | and Mohana. K, (1, 2)*-nga-closed sets 8.
and (1, 2)*-Quasi-a-normal Spaces in Bitopological
settings, Antarctica J. Math., 7(3) (2010), 345-355. 9.

2. Arockiarani. | and Mohana. K, (1, 2)*-mga-continuous
functions in Bitopological spaces, Acta ciencia Indica,

Vol. XXXVII, M. No. 4,(2011), 819-829.

3. Balachandran. K, Maki. H and Devi. R, Remarks on 10.
semigeneralized closed sets and generalized semi-closed
sets, Kyungpook Math. J., 36(1996), 155-163.

4. Dontchev. J and Ganster. M, On 8-generalised closed set 11.
and T3/4-spaces, Mem. Fac. Sci. Kochi Univ. Ser. A,

Math., 17(1996), 15-31.
12.
*kkkkkk*%x

How to citethisarticle:

Mohana K and Arockiarani 1.2016, Contra-(1, 2)*-Mg-Continuous Functions In Bitopological Spaces. Int J Recent Sci Res.
7(2), pp. 8508-8514.

Dontchev. J, Contra-continuous function and strongly S-
closed spaces, Internat. J. Math. Math. Sci., 19(2)
(1996), 303-310.

Lellis Thivagar. M, Ravi. O, On stronger forms of (1,
2)*- quotient mappingsin bitopological spaces. Internat.
J. Math. Game theory and Algebra. Vol. 14, No. 6
(2004), 481-492.

Mohana. K, Arockiarani. |, Contra (1,2)*-mga -
Continuous functions in Bitopological spaces, Advances
in Applied Mathematical Analysis, Vol. 6, No. 2(2011),
pp. 95-105.

Mohana. K, Arockiarani. I, (1, 2)*-ng-homeomorphims
in Bitopological spaces, CiiT Inter. J. Automation and
Autonomous System, April (2011). Mohana. K,
Arockiarani. I, (1, 2)*-strongly -mgo-closed sets,
Journal of Advanced studies in Topology, Vol.2, No.
2(2011), 31-36.

Mohana. K, Arockiarani. I, (1, 2)*- Mdmn —closed setsin
bitopological spaces, International Journal of
Mathematical Archive, 3(5), 2012, 2083-2088..

Mohana. K, Arockiarani. I, On some New functions of
(4, 2)*- mgaS-continuity in Bitopological spaces,
(Communicated).

Ravi. O and Lellis Thivagar. M, A bitopological (1, 2)*-
semigeneralized continuous maps, Bull. Malays. Sci.
Soc.,(2)29(1) (2006), 79-88.

8514 |Page



THSN 097 =1

76—320
03009" >

7709763




	1.pdf
	4202.pdf
	2.pdf

