RESEARCH ARTICLE
SCREENING OF ANTIBACTERIAL ACTIVITY IN MEDICINAL GRASS
(DACTYLOCTENIUM AEGYPTIUM) USING TWO EXTRACT

Jebastella.J* and Reginald Appavoo.M
Department of Botany & Research Centre, Scott Christian College (Autonomous) Nagercoil, Kanyakumari -629 003, Tamilnadu., India

ARTICLE INFO
Article History:
Received 2nd, June, 2015
Received in revised form 10th, June, 2015
Accepted 4th, July, 2015
Published online 28th, July, 2015

Key words:
Dactyloctenium aegyptium, crude extract, antibacterial assay, disc diffusion method.

Copyright © Jebastella. J and Reginald Appavoo. M., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION
Medicinal plants are the great and their source economic value. Plant herbs are naturally gifted at the synthesis of medicinal compounds. The extraction and characterization of bioactive compounds from medicinal plants have resulted in the discovery of new drugs with high therapeutic value. Treatment using medicines of natural origin is gaining momentum nowadays on account of increasing concern about potentially harmful synthetic additives (Reische, 1998).

Medicinal plants are important part of human beings and their civilization. In India they form the back bone of several indigenous traditional systems of medicine.

Today, pharmacological studies have acknowledged the value of medicinal plants as potential source of bioactive compounds. It has been estimated that between 60-90% of the populations of developing countries use traditional and botanical medicines. Several antibiotics were used to treat various diseases. Most of the pathogens developed drug resistance because of their limited narrow antimicrobial spectrum that leads to serious ill effect. Efforts are thus directed to identify plant product, which have broad– Spectrum antimicrobial property and no ill effect (Banginwar et al 2003, Farnsworth 1998, Thambekar et al 2006). Many drug resistant bacterial strains were developed due to the increased use of a number of antibacterial drugs. It also created the problem in controlling the growth of infectious disease causing pathogenic bacteria.

In herbal medicine, crude plant extracts in the form of infusion, decoction, tincture or herbal extract are traditionally used by the population for the treatment of diseases, including infectious diseases. Although their efficacy and mechanisms of action have not been tested scientifically in most cases, these simple medicinal preparations often mediate beneficial responses due to their active chemical constituents. Plants have been used to cure different diseases from ancient times. India is known for its traditional uses of plants; in order to promote the proper uses of herbal medicine and to determine their potential as a source of new drug, it is essential to study them in a more systematic and scientific manner Asolkar et al (1992). Though they have medicinal and nutrients and are considered good for human consumption (Shinwari and Gilani, 2003) but there is no fact that they also cause toxicity (Gilani et al. 2007, 2010).

Dactyloctenium aegyptium, pan-tropical in distribution, is also a destructive weed in crop fields; it has anti-oxidant, anti-inflammatory, anticancer and antipyretic properties (Khumbongmayum et al., 2005; Hansakul et al., 2009; Jananie

*Corresponding author: Jebastella.J
Department of Botany & Research Centre, Scott Christian College (Autonomous) Nagercoil, Kanyakumari -629 003, Tamilnadu., India

ABSTRACT
The present study was to investigate the antibacterial activity obtained from dactyloctenium aegyptium against Staphylococcus aureus, Pseudomonas aeruginosa, E.coli, Klebsiella pneumoniae, Proteus vulgaris by disc diffusion method. The results showed the maximum zone of inhibition was observed in pseudomonas aeruginosa in ethanol extract and the minimum zone of inhibition was observed in Proteus vulgaris, E.coli, Klebsiella pneumoniae in etha

Available Online at http://www.recentscientific.com
International Journal of Recent Scientific Research
ISSN: 0976-3031
et al., 2011) and is used for treating small pox, wounds and ulcers (Heuze et al., 2013). The present study was undertaken to further analyze the antibacterial activity of Dactyloctenium aegyptium.

MATERIALS AND METHODS

Sample collection and solvent extraction

The materials selected for the present study were Dactyloctenium aegyptium. The plants were collected from Nagercoil, Kanyakumari District, Tamilnadu, India. Plants were dried under shade condition for one month and cut into small pieces, pulverized in a grinder and stored in sterile containers for further use. A Soxhlet extractor apparatus was used for extraction, with ethanol and chloroform solvents.

Bacterial Strains

In the present study five human pathogens were used, namely E.coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus obtained from Inbiotics Institute of Biology of clinical Research, Nagercoil. Stock cultures were maintained in nutrient agar medium at 40°C, then subcultured in nutrient broth at 37°C prior to each microbial test.

Disc Diffusion Method

Disc Diffusion method was used to screen the antibacterial activity (Bauer et al., 1966). The sensitivity test of the chloroform and ethanol extracts were determined using agar–disc diffusion method. Media were prepared using Muller-Hinton Agar poured in petridishes and inoculated with test organisms from the broth using cotton swabs. Disc impregnated with the plant extract were placed on the swabbed plate. The plates were incubated overnight at 37°C for 24 hours. Amikacin was used as positive reference standard. After incubation, the clear zone around the discs were measured and expressed in mm as a measure of their antibacterial activity.

RESULTS AND DISCUSSION

The results of antibacterial activity in two extract of medicinal grass against human pathogens were shown in Table 1. The present investigation showed that the tested plant extract possess potential antibacterial activity against E.coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus.

The chloroform extract of Dactyloctenium aegyptium showed the antibacterial activity against five pathogens with the inhibition zones of 9.66, 9, 8.33, 9 and 8mm, respectively.

The ethanol extract of Dactyloctenium aegyptium showed the inhibition zone of 12, 7, 6.6, 7.66, 10.33 and 7.66mm, respectively. The maximum zone of inhibition was observed in Dactyloctenium aegyptium against Pseudomonas aeruginosa in ethanol extract and the minimum zone of inhibition was observed in Proteus vulgaris. E.coli, Klebsiella pneumoniae in ethanol extract. In the present study, it was also observed that gram negative bacteria were more sensitive than gram positive bacteria in the selected plant extract.

Table 1 Inhibition Zone In Dactyloctenium Aegyptium Using Disc Diffusion Method.

<table>
<thead>
<tr>
<th>S.no</th>
<th>Name of the bacteria</th>
<th>solvent</th>
<th>Dactyloctenium aegyptium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P.aeruginosa</td>
<td>Chloroform</td>
<td>9.66±0.57</td>
</tr>
<tr>
<td>2</td>
<td>E.coli</td>
<td>Chloroform</td>
<td>9±1</td>
</tr>
<tr>
<td>3</td>
<td>K.pneumoniae</td>
<td>Chloroform</td>
<td>8.33±0.57</td>
</tr>
<tr>
<td>4</td>
<td>S.aureus</td>
<td>Chloroform</td>
<td>9±1.73</td>
</tr>
<tr>
<td>5</td>
<td>P.vulgaris</td>
<td>Chloroform</td>
<td>8±1.73</td>
</tr>
</tbody>
</table>

Figure 1 Antibacterial Activity Of Dactyloctenium Aegyptium In Two Extracts.

Plate 1 antibacterial Activity In Dactyloctenium Aegyptium

Muhamed et al(2011) reported that methanol extract of D. indicum also showed significant antimicrobial activity against Staphylococcus aureus and E.coli with inhibition zones 22 and 20mm respectively at concentration 200mg/ml while the aqueous extract showed inhibition against E.coli with 18mm inhibition zones at concentration 200mg/ml were observed.
The methanol extracts of *C. dactylon* and *D. aegyptium*, that contain phenolic and flavonoid compounds, did not exhibit either antibacterial or antifungal activity even at 20 µg ml-1 of crude extract suggesting that antimicrobial compounds could be produced by certain endophytic fungal species in association and not by grass species alone. However, the reported antimicrobial activities of the above grasses Asthana et al (2012) might also depend on the chemical constituents following specific endophytic association.

CONCLUSION

From the above results, it is concluded that grass *Dactyloctenium aegyptium* showed antibacterial activity. Medicinal grasses are important to human beings in preserving our health. There is a growing interest in the pharmacological evaluation of *Dactyloctenium aegyptium* used in Indian traditional system of medicine.

Acknowledgement

The authors are thankful to the Principal, Head of the Department of Botany and the Management of Scott Christian College (Autonomous), Nagercoil for providing laboratory facilities during the period of this study.

Reference

How to cite this article: