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Present day biodiversity need to be explored though the clues of evolution and migration for understanding
the ancient relationship/origins. Traditionally zoogeographical distribution was a handy tool for deriving
evolutionary relationships. Presently molecular comparison among species by constructing phylogenetic
tree using nucleic acid and protein sequences is widely used in exploring the same. Secondary structure of
RNA (which accounts for negative free energy of molecule) has also been employed in relating two or
more than two species in some studies. Construction of secondary structure from 28S rRNA data of few
species of Gyrodactylus is employed in molecular comparison; evolution pattern and level of complexity
developed by organisms itself. The analysis performed in this work reflect that a range of patterns of
evolution in the secondary structure of rRNA (number and types of loops) can be set by exploiting one
species of a cluster as common/representative species. Geo-mapping of the different species when
compared with phylogenetic tree bring better understanding in probable evolution/migration patterns in
their hosts.
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INTRODUCTION

Addition to knowledge base in the form of new evidences
present new avenues for the study of evolutionary aspects.
Zoogeographical distribution of organisms pose a picture for
their present as well as ancient history. Host specific parasite
create much more clearer picture in terms of themselves along
with their hosts. Monogenean parasites can be taken as one
such tool for indirectly study their host zoogeographical
diversity, distribution, migration and settlement over period of
time. Monogenean genus Gyrodactylus is having greatest
diversity with approximately 409 species recorded from 400
hosts [1]. This genus offers a broader range for evolution and
ecology due to its versatile nature (reported from marine and
freshwater and brackish habitats) having much occurrence from
freshwater sources [2, 3]. On account of their exposure to
various environments and switching from one to other host,
they have noticeable variation in their genetic compositions,
which is necessary for their survival in that particular
environment [4]. Staying onto a host after switching from the
previous environment; be it marine to freshwater they gradually
tend to change their morphology and genetic composition
[4,5,6]. Sometimes they exhibit a significant development in
certain structures, if the host possesses hefty protective system
[7].

The comparative studies primarily involve morphological
features, habitat, mode of nutrition and adaptation and
anatomical characters especially in case of parasitic organisms
like monogeneans, whereas the molecular comparison shows
the way more specific towards their evolution and evolutionary
relationships[8], comparing the sequences of 28S rRNA and
secondary structures and measuring their structural parameters
(bond energy, base composition, geometrical features etc.)
regarded as best suited methods [9]. As the rRNAs have been
conserved throughout the evolution, bulges, loops, helices and
separation of single strands are considered as the phylogenetic
characters of secondary structure elements [10]. RNA
secondary structure is substantially useful in terms of giving
morphological information that cannot be inferred from
primary structure (simple sequence) [9,11]. It is also worth
mentioning that RNA contains sequence motifs that lead to the
development of DNA markers or biomarkers for individual
species [10,12].  In past, intensive phylogenetic analyses have
been carried out on the various species of the genus
Gyrodactylus, including species validation and evolutionary
relationship whenever some new species were discovered[13].
Most of these analyses were performed through sequence
(DNA/RNA) comparison and through construction of
phylogenetic tree but a little attention were paid on the
structural components of 28S rRNA molecules. Since data on
28S are available in National Center for Biotechnology
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Information (NCBI) and many other databases, it is worth
analyzing the phylogenetic relationships and re-setting the
evolutionary relations among species of the genus
Gyrodactylus[14]. A general trend among Monogenean
parasites is that morphologically, complexity level of species
increases from simpler to more complex system with
developing structures (capillaries, ducts, flame bulbs, haptor
etc.)[15]. Also, closely related monogeneans parasitize the
closely related host species[16]. Therefore, understanding the
molecular trends and utilizing 28S RNA will be useful in
correlating the hosts and their parasites as well as level of
complexity and extent of parasitism can be easily known from
28S secondary structure of species[17].

In this paper, authors intend to employ molecular diversity of
genus Gyrodactylus in evaluating relative relationship among
global representatives and predicting probable host
zoogeographical diversity, distribution, migration and
settlement over period of time using the secondary structure of
28S rRNA of some species of Gyrodactylus.

MATERIAL AND METHODS

Selection of Species of genus Gyrodactylus

In all thirty nine species were selected considering global
distribution representation (Table-1). Distribution and source of

species were confirmed from literature and other sources
(Gyrodb, Encyclopedia of Life, World Register of Marine
Species etc.).

Molecular Phylogenetic Analysis

Sequences for selected species (Table-1) were subjected to
alignment using ClustalW (inbuilt in MEGA 6) for multiple
sequence alignment (Thompson et al. 1994) with the default
gap and extension penalties used by this tool. MEGA 6 was
used for constructing the phylogenetic tree using neighbor
joining (NJ) method, . The average pathway method was used
to calculate the branch length depicted in the number of
variations all over the sequences. Resultantly, the most
parsimonious tree was chosen by the close-neighbor-
interchange algorithm. A bootstrap procedure with 1000
replication was executed for assessing the robustness of the
inferred phylogenetic tree. The constructed NJ tree consisted of
39 species was represented with six clades for further analysis
(Figure 1).

Inferring Secondary Structure of 28SrRNAs

The formation of secondary structure is based upon the
alignment score of the sequences of clades. Subsequently, the
sequence with the highest score was subjected to Mfold (URL

Table1 List of species of the genus Gyrodactylus, corresponding source, host and accession id.

Sl. Parasite Host Marine/Fresh Country/Area Accession ID Reference
1. G. nudifronsi Rokicka et al., 2009 Gaudy notothen Freshwater Antarctica FJ009452 [18]
2. G. coriicepsi Rokicka et al.,2009 Gaudy notothen Freshwater Antarctica FJ009451 [19][18]
3. G. anguillae Ergens, 1960 Anguillae reinhardti Marine Australia AB063294 [20],[21]
4. G. corti Mizelle & Kritsky, 1967 Anarrhichthys ocellatus Marine California KJ095103 [22]
5. G. alburnensis Prost 1972 Phoxinus eos Marine Canada AY278032 [30]
6. G. brachymystacis Ergens, 1978 Salvelinus fontinalis Freshwater Canada GQ368237 [23],[24]
7. G. parvae You, Easy & Cone, 2008 Pseudorasboraparva Freshwater Central China EF450249 [25]
8. G. rivularae Basilewsky, 1855 Abbottina rivularis Marine Central China HM18588 [26]
9. G. sprostonae Ling, 1962 Carassius carassius Freshwater China AY278044 [27]
10. G. salmonis Yin & Sproston, 1948 Oncorhynchus clarki Marine China GQ368233 [28],[29]
11. G. pomeraniae Jussi Kuusela, 2008 Rutilus rutilus Freshwater Finland EF143069 [30]
12. G. ouluensis Kuusela et al., 2008 Rutilus rutilus Freshwater Finland AF484546 [30]
13. G. truttae Mikailov, 1975 Salmo trutta Freshwater Germany AJ132260 [31]
14. G. pannonicus Molnar, 1968 Barbus barbus Freshwater Hungary EU678645 [32]
15. G. gussevi Ling Mo-en, 1962 Heteropneusts fossilis Freshwater India KJ461316 [33]
16. G. colisai Bloch & Schn. Colisa fasciatus Freshwater India GQ925912 [34]
17. G. derjavinoides Malmberg, 1975 Salmo trutta trutta Marine Iran DQ357215 [35]
18. G. neretum Paladini et al., 2010 Syngnathus scovelli Marine Italy FJ183748 [36]
19. G. corleonis Paladini et al., 2010 Syngnathus scovelli Freshwater Italy FJ183747 [22][36],[37]
20. G. kobayashii Kobayashi J ,1988 Carassius auratus Freshwater Japan KJ755086 [26]
21. G. zimbae Vanhove et al., 2011 Simochromis diagramma Freshwater Lake Tanganyika HQ214482 [38]
22. G. thysi Vanhove et al., 2011 Simochromis diagramma Freshwater Lake Tanganyika HQ214481 [39]
23. G. sturmbaueri Vanhove et al., 2011 Simochromis diagramma Freshwater Lake Tanganyika HQ214480 [39],[40]
24. G. chileani Ziętara, et al., 2012 Helcogrammoides chileani Marine Mediterranean & N. Seas JQ045347 [22]
25. G. gondae Huyse et al., 2004 Pomatoschistus minutes Marine Mediterranean Sea AF328866 [41]
26. G. aideni Mullen et al., 2010 Pseudopleuronectes americanus Marine Canada (New Brunswick) HM48128 [42]
27. G. gurleyi Price, 1937 Carassius auratus Marine North America KC922453 [43]
28. G. leptorhynchi Cone et al., 2013 Syngnathus leptorhynchus Marine North America JX110633 [37]
29. G. bullatarudis Turnbull, 1956 Poecilia reticulate Freshwater Northern Trinidad AY692024 [44],[45]
30. G. pictae Cable 2005 Poecilia reticulate Freshwater Northern Trinidad AY692023 [46]
31. G. papernai Ergens & Bychowsky, 1967 salmon Salmo Freshwater Russia AF484533 [47]
32. G. ergensi Prikrylova, et al., 2009 Oreochromis niloticus Freshwater Senegal FN394985 [48]
33. G. eyipayipi Vaughan et al., 2010 Syngnathus acus Marine South Africa FJ040184 [49]
34. G. robustus Malmberg, 1957 Platichthys flesus Marine Sweden AY278040 [18]
35. G. phoxini von Nordmann, 1832 Phoxinus phoxinus Freshwater Sweden AY278037 [50]
36. G. flesi Malmberg, 1957 Platichthys flesus Marine Sweden AY278039 [18],[51]
37. G. magnificus Malmberg, 1957 Phoxinus phoxinus Freshwater Sweden AY278035 [50]
38. G. salaris Malmberg, 1957 Salmo salar Freshwater Sweden EF464678 [52],[53]
39. G. ch. Teuchis Lautraite et al.,1999 Oncorhynchus mykiss Marine North America KM19223 [54]
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http://mfold.rna.albany.edu) for constructing the secondary
structure of 28S rRNA at a fixed temperature of 370 C and
analyzed for loops, stems and bulges. Similarly, the procedure
was repeated for all clades and as a result six RNA secondary
structures were formed. In this way, every clade in the tree had
been associated with its rRNA which averaged out the
evolutionary commonalities between the species of a particular
clade. This has made the cladistic analysis more precise than
the traditional comparison of clades with bootstrap values.

Geo mapping

In order to understand the global scenario of the species
relatedness and diversity all the selected species as per table-1
were marked on simple world map manually. Later on marked
species were joined with reference to their respective clades for
inferring molecular relatedness.

RESULTS

Construction of phylogenetic tree

After alignment and processing for phylogenetic tree as per
selected methods tree with six clades was formed (Fig. 1).

In the tree, Clade1, Clade2, Clade3, Clade4, Clade5 and Clade6
have 12, 5, 6, 3, 2 and 8 species respectively. Three species: G.
papernai, G. gondae and G. colisai were kept out of the cluster

since they didn’t show the default/optimum evolutionary
relatedness/relationship with any other species in the tree. We
only aim to compare the groups of species in clades and not the
individual ones, therefore these three species were left
unmarked and hence were not considered in the analysis. In our
analysis, out-group does not affect the in-group (cluster) which
is the only concerned in constructing this phylogenetic tree.
First cluster (Clade) had 12 species in which representative
species G. zimbae formed a sister clade with G. thysi with 94%
bootstrap value. This relationship showed that these species
had the closely related origin. In the second sister clade of the
same cluster G. bullatardis and G. pictae were related by 81%
bootstrap value. The second clade had five species with sister
clades and commonly linked by 50% bootstrap value. Among
the sister clades, bootstrap value were considerably significant
as they were linked by higher bootstrap values. The third
cluster, although had 35% bootstrap value in common but sister
clade in the cluster had highly significant bootstrap values. The
fourth cluster with three species had 36% and 42% bootstrap
value, does not represent significant evolutionary relationship.
The fifth cluster comprising of two species had a 65%
bootstrap value. The sixth and last cluster comprising of eight
species formed seven sister clades with considerable bootstrap
values among which the top most sister clade comprising of
two species had the best bootstrap value of 77%.

Secondary structure analyses

Secondary structure (Fig. 2) generated by Mfold exhibited
differences (Table-2) between clades using maximum negative
free energy and pattern of loop and bulge formation. Secondary
structure of G. ergensi and G. sprostoni (representative of
clade3 and clade4) had highest (G = -227.20 Kcal/mol)
negative free energy (Fig. 2 c. and d.). G. zimbae (Clade1) had
the second highest (G= -226.70 Kcal/mol) negative free
energy. G. leptorhynchi (Clade2), G. derjivinoides (Clade5), G.
branchymystacis (Clade6), had G = -198.80 Kcal/mol, G = -
196.00 Kcal/mol, G = -206.10 Kcal/mol negative free
energies respectively. The negative free energies except
Clade2, Clade5 and Clade6 had a range from -226.70 to -
227.20 Kcal/mol. Clades falling in this range were Clade1,
Clade3, Clade4 and Clade5, confirmed the closer relatedness
and evolution pattern. Clade1, Clade3 and Clade4 showed the
closest evolutionary relatedness of these 28S RNAs with a
difference of G = -0.50 Kcal/mol negative free energy, proved
to be of the same evolution pattern.

RNA in the folded form exhibit paired and unpaired (loops)
bases. Qualitatively. The pattern of loops in secondary structure
varied for all forms i.e., interior loop, hairpin loop and bulge
loop. Among all three types of loops, interior loops are more in
number.Clade4 had the maximum number (45) of loops, where
as Clade3 had the second most (42) loops in number. Clade1,
Clade2, Clade5 and Clade6 had 39, 41, 41 and 41 loops
respectively. Three Clades 2,5 and 6 are equal in number in
loops, confirmed the similar stability which is also
corroborated by the range of negative free energies of these
Clades. They are falling in the range of -196.00 to -206.10
kcal/mol negative free energy.

Figure 1Phylogenetic tree (Neighbor joining) using 28S rRNA sequences
for the 39 species of genus Gyrodactylus.

International Journal of Recent Scientific Research Vol. 6, Issue, 7, pp.4970-4977, July, 2015

4972 | P a g e

http://mfold.rna.albany.edu) for constructing the secondary
structure of 28S rRNA at a fixed temperature of 370 C and
analyzed for loops, stems and bulges. Similarly, the procedure
was repeated for all clades and as a result six RNA secondary
structures were formed. In this way, every clade in the tree had
been associated with its rRNA which averaged out the
evolutionary commonalities between the species of a particular
clade. This has made the cladistic analysis more precise than
the traditional comparison of clades with bootstrap values.

Geo mapping

In order to understand the global scenario of the species
relatedness and diversity all the selected species as per table-1
were marked on simple world map manually. Later on marked
species were joined with reference to their respective clades for
inferring molecular relatedness.

RESULTS

Construction of phylogenetic tree

After alignment and processing for phylogenetic tree as per
selected methods tree with six clades was formed (Fig. 1).

In the tree, Clade1, Clade2, Clade3, Clade4, Clade5 and Clade6
have 12, 5, 6, 3, 2 and 8 species respectively. Three species: G.
papernai, G. gondae and G. colisai were kept out of the cluster

since they didn’t show the default/optimum evolutionary
relatedness/relationship with any other species in the tree. We
only aim to compare the groups of species in clades and not the
individual ones, therefore these three species were left
unmarked and hence were not considered in the analysis. In our
analysis, out-group does not affect the in-group (cluster) which
is the only concerned in constructing this phylogenetic tree.
First cluster (Clade) had 12 species in which representative
species G. zimbae formed a sister clade with G. thysi with 94%
bootstrap value. This relationship showed that these species
had the closely related origin. In the second sister clade of the
same cluster G. bullatardis and G. pictae were related by 81%
bootstrap value. The second clade had five species with sister
clades and commonly linked by 50% bootstrap value. Among
the sister clades, bootstrap value were considerably significant
as they were linked by higher bootstrap values. The third
cluster, although had 35% bootstrap value in common but sister
clade in the cluster had highly significant bootstrap values. The
fourth cluster with three species had 36% and 42% bootstrap
value, does not represent significant evolutionary relationship.
The fifth cluster comprising of two species had a 65%
bootstrap value. The sixth and last cluster comprising of eight
species formed seven sister clades with considerable bootstrap
values among which the top most sister clade comprising of
two species had the best bootstrap value of 77%.

Secondary structure analyses

Secondary structure (Fig. 2) generated by Mfold exhibited
differences (Table-2) between clades using maximum negative
free energy and pattern of loop and bulge formation. Secondary
structure of G. ergensi and G. sprostoni (representative of
clade3 and clade4) had highest (G = -227.20 Kcal/mol)
negative free energy (Fig. 2 c. and d.). G. zimbae (Clade1) had
the second highest (G= -226.70 Kcal/mol) negative free
energy. G. leptorhynchi (Clade2), G. derjivinoides (Clade5), G.
branchymystacis (Clade6), had G = -198.80 Kcal/mol, G = -
196.00 Kcal/mol, G = -206.10 Kcal/mol negative free
energies respectively. The negative free energies except
Clade2, Clade5 and Clade6 had a range from -226.70 to -
227.20 Kcal/mol. Clades falling in this range were Clade1,
Clade3, Clade4 and Clade5, confirmed the closer relatedness
and evolution pattern. Clade1, Clade3 and Clade4 showed the
closest evolutionary relatedness of these 28S RNAs with a
difference of G = -0.50 Kcal/mol negative free energy, proved
to be of the same evolution pattern.

RNA in the folded form exhibit paired and unpaired (loops)
bases. Qualitatively. The pattern of loops in secondary structure
varied for all forms i.e., interior loop, hairpin loop and bulge
loop. Among all three types of loops, interior loops are more in
number.Clade4 had the maximum number (45) of loops, where
as Clade3 had the second most (42) loops in number. Clade1,
Clade2, Clade5 and Clade6 had 39, 41, 41 and 41 loops
respectively. Three Clades 2,5 and 6 are equal in number in
loops, confirmed the similar stability which is also
corroborated by the range of negative free energies of these
Clades. They are falling in the range of -196.00 to -206.10
kcal/mol negative free energy.

Figure 1Phylogenetic tree (Neighbor joining) using 28S rRNA sequences
for the 39 species of genus Gyrodactylus.

International Journal of Recent Scientific Research Vol. 6, Issue, 7, pp.4970-4977, July, 2015

4972 | P a g e

http://mfold.rna.albany.edu) for constructing the secondary
structure of 28S rRNA at a fixed temperature of 370 C and
analyzed for loops, stems and bulges. Similarly, the procedure
was repeated for all clades and as a result six RNA secondary
structures were formed. In this way, every clade in the tree had
been associated with its rRNA which averaged out the
evolutionary commonalities between the species of a particular
clade. This has made the cladistic analysis more precise than
the traditional comparison of clades with bootstrap values.

Geo mapping

In order to understand the global scenario of the species
relatedness and diversity all the selected species as per table-1
were marked on simple world map manually. Later on marked
species were joined with reference to their respective clades for
inferring molecular relatedness.

RESULTS

Construction of phylogenetic tree

After alignment and processing for phylogenetic tree as per
selected methods tree with six clades was formed (Fig. 1).

In the tree, Clade1, Clade2, Clade3, Clade4, Clade5 and Clade6
have 12, 5, 6, 3, 2 and 8 species respectively. Three species: G.
papernai, G. gondae and G. colisai were kept out of the cluster

since they didn’t show the default/optimum evolutionary
relatedness/relationship with any other species in the tree. We
only aim to compare the groups of species in clades and not the
individual ones, therefore these three species were left
unmarked and hence were not considered in the analysis. In our
analysis, out-group does not affect the in-group (cluster) which
is the only concerned in constructing this phylogenetic tree.
First cluster (Clade) had 12 species in which representative
species G. zimbae formed a sister clade with G. thysi with 94%
bootstrap value. This relationship showed that these species
had the closely related origin. In the second sister clade of the
same cluster G. bullatardis and G. pictae were related by 81%
bootstrap value. The second clade had five species with sister
clades and commonly linked by 50% bootstrap value. Among
the sister clades, bootstrap value were considerably significant
as they were linked by higher bootstrap values. The third
cluster, although had 35% bootstrap value in common but sister
clade in the cluster had highly significant bootstrap values. The
fourth cluster with three species had 36% and 42% bootstrap
value, does not represent significant evolutionary relationship.
The fifth cluster comprising of two species had a 65%
bootstrap value. The sixth and last cluster comprising of eight
species formed seven sister clades with considerable bootstrap
values among which the top most sister clade comprising of
two species had the best bootstrap value of 77%.

Secondary structure analyses

Secondary structure (Fig. 2) generated by Mfold exhibited
differences (Table-2) between clades using maximum negative
free energy and pattern of loop and bulge formation. Secondary
structure of G. ergensi and G. sprostoni (representative of
clade3 and clade4) had highest (G = -227.20 Kcal/mol)
negative free energy (Fig. 2 c. and d.). G. zimbae (Clade1) had
the second highest (G= -226.70 Kcal/mol) negative free
energy. G. leptorhynchi (Clade2), G. derjivinoides (Clade5), G.
branchymystacis (Clade6), had G = -198.80 Kcal/mol, G = -
196.00 Kcal/mol, G = -206.10 Kcal/mol negative free
energies respectively. The negative free energies except
Clade2, Clade5 and Clade6 had a range from -226.70 to -
227.20 Kcal/mol. Clades falling in this range were Clade1,
Clade3, Clade4 and Clade5, confirmed the closer relatedness
and evolution pattern. Clade1, Clade3 and Clade4 showed the
closest evolutionary relatedness of these 28S RNAs with a
difference of G = -0.50 Kcal/mol negative free energy, proved
to be of the same evolution pattern.

RNA in the folded form exhibit paired and unpaired (loops)
bases. Qualitatively. The pattern of loops in secondary structure
varied for all forms i.e., interior loop, hairpin loop and bulge
loop. Among all three types of loops, interior loops are more in
number.Clade4 had the maximum number (45) of loops, where
as Clade3 had the second most (42) loops in number. Clade1,
Clade2, Clade5 and Clade6 had 39, 41, 41 and 41 loops
respectively. Three Clades 2,5 and 6 are equal in number in
loops, confirmed the similar stability which is also
corroborated by the range of negative free energies of these
Clades. They are falling in the range of -196.00 to -206.10
kcal/mol negative free energy.

Figure 1Phylogenetic tree (Neighbor joining) using 28S rRNA sequences
for the 39 species of genus Gyrodactylus.



Fozail Ahmad et al., In Silico Phylogenetic Studies On Some Members Of Parasitic Genus Gyrodactylus (Monogenea:
Gyrodactylidae) For Assessment Of Evolutionary Relatedness Inferred From 28s Ribosomal Rna And Geomapping The Sample

4973 | P a g e

A. B.

C. D.

E. F.
Figure 2 28S rRNA Secondary structure of A. G. alburnensis, B. G. pictae, C. G. corti, D. G. stumbaeuri, E. G. corleonis, F. G. truttae

Table 2 Clade details listed with representative species showing various parameters.

S. no. Clade (Species) Negative free energy (G) Interior loop Hairpin loop Bulge loop Total number of loops
1. Clade1 (G. zimbae) -226.70 15 19 5 39
2. Clade2 (G. leptorhynchi) -198.80 20 15 6 41
3. Clade3 (G. ergensi) -227.20 17 19 6 42
4. Clade4 (G. sprostoni) -227.20 19 19 7 45
5. Clade5 (G. derjavinoides) -196.00 17 18 6 41
6. Clade6 (G. branchymystatic) -206.10 20 16 5 41
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DISCUSSION

The phylogenetic tree from neighbor joining method showed
that clades vary greatly in possessing the number of species
which represents the variations among species of the genus
Gyrodactylus [55] (figure-1). The species G. closai was the
out-group in the tree as it has no bootstrap value[56]. The
criteria of selecting an out-group depend upon the kind of
analysis being performed[57]. The comparison between all six
common RNA from each clade proves that all are genetically
distinct[58,59]. RNA in the folded form showed paired and
unpaired (loops) bases. Qualitatively, bases which are bonded,
tend to stabilize RNA due to negative free energy whereas
unpaired bases tend to destabilize the molecule due to positive
free energy[60]. Quantitatively, loop that are more in number
destabilize the secondary structure because they require more
positive free energy[61]. Thus, clade3 and clade4 are the most
stable and Clade5 is the least stable structure signifying that
organisms belonging to the particular clade will be of equal
stability in terms of negative free energy of RNA. The
phylogenetic analysis was performed with the aim of finding
the organism which could represent its clade, making
comparative studies fast and easier whereas secondary structure
analysis strengthens them[62]. From first to sixth cluster, each
organism representing its own clade showed distinction in the

term of number of neighbor organisms and 28S rRNA
secondary structure. Although negative free energy and number
of loops varied within all clades but a correlation between the
two parameters have been established. Clade5 with a total of 39
loops (least in number) possessed second highest G (negative
free energy) whereas Clade2, clade5 and clade6 with a total of
41 loops (all having the same number) possessed least negative
free energy. Systematically, these groups should have higher
G than the presented ones because more loops require more
G[63]. Clade4 and clade5 with maximum number of loops
possessed the highest G. Comparatively, they don’t coincide
with other clades in number of loops and G because each
group of organisms have their particular pattern of evolution of
RNA[64]. The distinctions among clades were accounted due
to the size of loops. Loops more in number but smaller in size
are formed with less negative free energies whereas loops less
in number but larger in size require more negative free
energies[65]. Evidently, both, size and number of loops are
accounted for estimating out the stability of a structure[66, 67].
The pattern of evolution of species is reflected by the
development of loops and their sizes which in turn account for
the overall stability of RNA. Evolution has always increased
level of complexity which of course coincides with the
necessities of situation[68]. RNA having more complex
secondary structure presents with more loops and small sizes
whereas molecule with lesser loops and large sizes shows
lower level of complexity[69]. Same clade have the species
which are more or less relatively close to each other in terms of
geographical distribution or possibly connected through
probable migration cycle (Fig. 3-4). Being able to survive in
variety of habitats [2-4] this genus is ideal to study the variable
habitat (fresh and marine) migration and settlements among
their host.

CONCLUSION

The molecular comparison between large numbers of species
has been possibly made easier and time required for such
analysis is reduced by representing more than two
evolutionarily related species with a common species. Through
forming clades and clusters, grouped species will be further
related in terms of negative free energy. This will not be
limited up to individual evolution pattern of a species only but
the entire group as a whole. The representing species of a
cluster/clade will provide a range of evolution, stability (RNA
structure) and complexity between other related groups. Same
clade represents the commonly related species and indirectly
host as well. Ideally reflecting the distribution (over a long
period of time) and diversification of their host on
zoogeographical scale.
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