RESEARCH ARTICLE
HYBRID MACHINES PET/CT SCANNERS BY USING 18F, 82Sr AND 68Ge RADIONUCLIDE

Akhlass Jawad Amera

Department, Al-Kindy College of Medicine, Baghdad University, Iraq

ARTICLE INFO

ABSTRACT

The increased use of hybrid PET/CT scanners combining detailed anatomical information along with functional data has benefits for both diagnostic and therapeutic purposes. This presented study is to make comparison of cross sections to produce 18F, 82Sr and 68Ge via different reactions with particle incident energy up to 60 MeV as a part of systematic studies on particle-induced activations on enriched 85Ne, 86Rb, 85Ga 64O, 86Rb, and 68Ga targets, theoretical calculation of production yield, calculation of required target and suggestion of optimum reaction to produce: Fluorine-18, Strontium-82 and Germanium-68 to use in Hybrid Machines PET/CT Scanners.

INTRODUCTION

Since the first prototypes over a decade ago, the continued use of PET/CT in the clinic has introduced ever increasing applications as clinics gain more experience and realize the potential. The ability to combine detailed anatomy with function has even spurred another technology breakthrough. This review covers numerous aspects of combined PET/CT; from quality assurance and imaging artifacts to diagnostic and therapeutic uses [1].

The goal of the PET/CT prototype was to overcome some of the technical and logistic difficulties associated with the software approaches by acquiring both clinical-quality anatomic images and clinical-quality functional images in a single scanning session, that such a device will encourage involvement in molecular imaging of other medical specialists such as radiologists, surgeons, and oncologists specialists who are more familiar with high-resolution anatomic imaging than with the tracer techniques of functional imaging. Combined PET/CT.

Principles and Application

PET/CT scanners usually have a large bore size (70 cm diameter; 100 cm axial length) allowing for the use of immobilization devices and larger patients1. The CT scanner is usually in the front of the gantry and may be acquired in axial or helical mode. The PET scanner is usually located in the back of the gantry and may be acquired using two or three dimensional modes.

This hybrid unit consists of two separate devices, namely a PET and a CT scanner, linked by one common bed and workstation console where data from both modalities are acquired sequentially rather than simultaneously as planned during the earlier conceptual design of the machine [2]. Commercial PET/CT systems are usually configured by designing a gantry that mounts a stationary PET detector ring in tandem with a platform that rotates the CT imaging chain around the patient using a mechanical configuration similar to that used in a conventional diagnostic CT scanner. Performing PET and CT measurements within the same system without moving the patient relative to the table make the registration problem easier.

PET when combined with CT imaging gives the greatest information as far as delineating tumor extent for many types of cancers. This allows for precise targeting of the tumor using radiotherapy. Typically beams are confined to treat the gross tumor volume along with a margin which supposedly encompasses microscopic disease [3].

However, there are no strict guidelines as to how much of a margin to include. This is important because the larger volume of tissue of which is irradiated, the greater chance of normal tissue complications. If the exact extent of the tumor spread were known, then the absorbed dose could be increased at the tumor location while modulating the beam to minimize dose elsewhere, the addition of PET imaging to CT also allows for

Copyright © Akhlass Jawad Amera. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.
the possibility of dose painting. For example ¹⁸F-FDG PET may be used to locate the more active regions of a tumor as determined by glucose consumption. Zhou et al. used ¹⁸F-FDG PET activity as a surrogate for tumor cell density for biological dose calculations [4, 5].

Modern PET/CT scanners are equipped with helical CT technology allowing to acquire high resolution anatomical images within a few seconds following patient positioning and definition of the axial field of view on the tow program. It is therefore obvious that PET is the limiting factor when it comes to scanning speed on combined PET/CT [6].

Advantage

One main advantage of a PET/CT scanner is that it uses the CT images (as transmission images) for attenuation correction of the PET data, rather than relying on a rotating transmission rod source. PET/CT scanners are able to perform the registration of the transmission images in extremely short times (less than a minute), with the PET study acquisitions performed immediately after. Upon reconstruction, both the PET images and the CT images are displayed side by side and overlaid.

Use of the CT scan reduces the total PET acquisition time, which translates into increased patient comfort and cooperation. The availability of high-quality transmission images also leads to a more precise localization and interpretation of the hyper metabolic disease areas. While other indications benefit from PET/CT scans, today’s oncology procedures far outnumber all other clinical indications.

METHOD

Nuclear data play a very important role in the choice of a radioisotope for a medical application. Nuclear structure and the decay data determine the suitability of a radioisotope for diagnostic application while the nuclear reaction data study the possibility of its production in a pure form.

The feasibility of the production of ¹⁸F, ⁸²Sr and ⁶⁸Ge via various nuclear reactions was investigated. Excitation functions of ¹⁸F, ⁸²Sr and ⁶⁸Ge production by the reactions of nat Ne +d and ¹⁸O +p to produce ¹⁸F, ⁸⁵Rb +p and , natRb+p to produce ⁸²Sr and ⁶⁹Ga +p, natGa +p to produce ⁶⁸Ge .

We calculated using the available data in the international libraries. According to SRIM code [7], the thick target integral yields were deduced using the calculated evaluated cross sections. A Matlab sub programs was used to solve the following yield equation (1) [8]:

\[Y = N P \sigma (E) 10^{-30} (1 - e^{-\lambda t}) \] …………. (1)

Whereas, \(\sigma (E) \) (mb) is the average cross section at a specific energy (E); N is the number of target atoms/cm², \(\lambda \) is the decay constant of the produced isotopes, \(P \) is the number of incident protons/sec for (1 μA) and \(t \) is the irradiation time (t= 1 h). The integral target yield \(Y \) is calculated by summing up the differential yields.

RESULTS AND DISCUSSIONS

Calculation of excitation function

Production of ¹⁸F

a- natNe(d,x)¹⁸F reaction

The excitation functions of the deuteron induced reaction on natNe were determined by equation(1) and SRIM code; (Figure.1 and Figure.2). The evaluation of the results of the calculations showed that the best range of energy that favors the reaction is from(0 to 20) MeV. According to A.N. Dovbyna et al.[9] and S.Takacs et al. [10], this reaction appears to be modest for the purpose of ¹⁸F production.

b- ¹⁸O(p,n)¹⁸F reaction

The ¹⁸O(p,n)¹⁸F reaction is an important proton incident particle for producing ¹⁸F from enriched ¹⁸O targets. Several authors [11, 12, 13, 19], studied the energy range of proton energy producing ¹⁸F from 2.5 to 16 MeV , the cross-section is obtained figure(3).

The theoretical thick-target yield using SRIM using eq.(1) is found to be equal to 1346 GBq/C as shown in figure (2). This reaction appears to be very good for the purpose of ¹⁸F production to use in PET/CT [20].
production of 82Sr

a- 85Rb(p,4n)82Sr reaction

The excitation functions of the proton induced reaction on 85Rb was determined by equation(1) and SRIM code (Figure. 4 and Figure.5). The evaluation of the results of the calulations showed that the best range of energy that favors the reaction is from 34 to 60 MeV. According to T.Horiguchi et al[21]; S.Takacs et al [22] and S.Kastleiner et al [23] . Reaction appears to be modest for the purpose of 82Sr production.

b- 85Rb(p,x)82Sr reaction

The excitation functions for 82Sr of the 85Rb(p,4n) and the 85Rb(p,x)82Sr reactions

Figure 6 cross sections for natRb(p,x)82Sr

production of 68Ge

a- 69Ga(p,2n)68Ge reaction

69Ga(p,2n)68Ge reaction is beneficial energy range of proton energy producing 68Ge from a 69Ga target is from 12 to 30 MeV ,the maximum cross-section obtained according to V.N.Levkovskij [32], S.Takacs et al[33] and N.T.PORILE et al[34] is obtained. The production yield of 68Ge using SRIM code and equation(1) in the chosen energy range is 682.79GBq/C as shown in figures (7 and 8). This reaction appears to be good for the purpose of 68Ge production.

b- natRb(p,x)68Ge reaction

The 85Rb(p,x)82Sr reaction is an important proton incident particle for producing 82Sr from enriched natural 85Rb targets . Several authors [24,25-30], studied the energy range of proton
CONCLUSIONS

The only other obstacle to the wider use of PET-CT is the difficulty and cost of producing and transporting the radiopharmaceuticals used for PET imaging, which are usually extremely short-lived. For instance, the half life of radioactive fluorine-18 used to trace glucose metabolism (using fluorodeoxyglucose, FDG) is 109.77 min. only. But the use of other isotopes such as Strontium-82 (the half life=25.36 days), or Germanium-68 (half life=270 days) provides the longest for the Scanners.

There are several ways to produce those Isotope. The production of 18F can be obtained using different nuclear reactions, for low proton energies (0 to 16 MeV) the reaction 18O(p,n)18F reaction gives best yield (1346 GBq/C)(Fig.2), while for the other possible reactions as the 18O(p,2n) reaction, for low proton energies (0 to 16 MeV), the possible yields are in the order of (380GBq/C) (Fig. 2). The reaction 85Rb(p,4n) reaction is good method to produce 82Sr (4.3GBq/C) (Fig. 5). The proton reactions play an important role to produce 68Ge in 69Ga(p,2n), with energies (12 to 30) the yield of its about (682.79GBq/C) (Fig.8).

References

2. C.Depta, V.A.kalkin, Kimsenhan, O.Knotek, V.A.konov, P.Mikecz, et.al., (1990)."Excitation Functions and Yields For Medically Generator Sr82 Rb82,Xe123 I123 and Bi201-Pb201-TI201Obtained with 100 MeV Protons". Nukleonica, Vol.35, p.3 Poland
8. J. M. Blair and J. J. Leigh.(1960)."Excitation functions for the production of 82Sr by proton bombardment of natRb at energies up to 100 MeV ").Applied Radiation and Isotopes, Vol.64, p.915 UK

How to cite this article:
