

Available Online at http://www.recentscientific.com

CODEN: IJRSFP (USA)

International Journal of Recent Scientific Research Vol. 15, Issue, 01, pp.4500-4502, January, 2024

Research Article

International Journal of Recent Scientific Re*r*earch

DOI: 10.24327/IJRSR

A CROSS SECTIONAL STUDY TO ASSESS PREVALENCE AND RISK FACTORS ASSOCIATE WITH NON-COMMUNICABLE DISEASE AFTER COVID 19 AMONG ADULTS OF NORTH INDIA

Pooja Jaswal

Associate Professor, MM Institute of Nursing, MM (Deemed to be University) Mullana

DOI: http://dx.doi.org/10.24327/ijrsr.20241501.0845

ARTICLE INFO

Article History:

Received 11th December, 2023 Received in revised form 27th December, 2023 Accepted 14th January, 2024 Published online 28th January, 2023

Keywords:

NCD, Adult. Covid 19.

ABSTRACT

Introduction: Over two-thirds (67%) of disease burden in India, measured by disabilityadjusted life years (DALYs), is attributable to noncommunicable diseases (NCDs) and injuries.1 The Indian state-level disease burden estimates suggest significant differences among states in the composition of disease burden. Globally, there was a significant correlation between healthy life expectancy (HALE), non-communicable disease DALYs and mortality, with COVID-19 caseload and deaths. **Aims:** the present study aim to assess Prevalence and risk factors associate with non-communicable disease after covid 19 among adults of North India. **Method:** A cross sectional study conducted in rural community area of Ambala district. **Results:** the results showed that 15% adults was diagnosed with NCD after the Covid 19 pandemic, due to dietary pattern , in activities and high stress level. Conclusion: Necessary preventive measure are important to reduce the NCD Prevalence

Copyright[©] The author(s) 2024, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Over two-thirds (67%) of disease burden in India, measured by disability-adjusted life years (DALYs), is attributable to noncommunicable diseases (NCDs) and injuries.1 The Indian state-level disease burden estimates suggest significant differences among states in the composition of disease burden. Globally, there was a significant correlation between healthy life expectancy (HALE), non-communicable disease DALYs and mortality, with COVID-19 caseload and deaths. Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major global crisis.

On March 11, 2020, the World Health Organization (WHO) declared COVID-19 a pandemic and it has become one of the deadliest pandemics in the last century. The burden of COVID-19 extends far beyond that of a contagious disease. COVID-19 affects the entire health system through its direct effect as a communicable disease, as well as its ability to alter the overall mortality and burden of disease through impact on non-communicable diseases.

Globally, non-communicable diseases, including cardiovascular disease, accounted for greater than 70% of all deaths in 2017. There is mounting evidence that COVID-19 and non-communicable diseases may be associated on multiple levels, resulting in potentially unexpected effects on health

*Corresponding author: Pooja Jaswal

Associate Professor, CON, CH(CC), Lucknow

outcomes. On one hand, COVID-19 is associated with cardiovascular diseases, such as acute cardiac injury (e.g. myocarditis), stroke, and exacerbation of subclinical vascular pathology. On the other hand, due to worldwide population ageing, many individuals may have multiple chronic medical conditions which can negatively impact the outcome of COVID-19 infection. A combination of frailty, ageing, and vascular comorbidities, together with COVID-19, represents a scenario that can exponentially increase hospitalization, intensive care unit admission, and hospital readmissions. This may explain the increased death rates in some countries, particularly among vulnerable patients with non-communicable diseases.

Govt of India report reported More than 9.5 million COVID-19 cases and 135,000 deaths have been reported in India towards end of November 2020. There is significant positive correlation of state-level COVID-19 cases and deaths per million, respectively, with NCD risk factors- obesity (0.64, 0.52), hypertension (0.28, 0.16), diabetes (0.66, 0.46), NCD epidemiological transition index (0.58, 0.54) and ischemic heart disease mortality (0.22, 0.33). analyses shows strong correlation of COVID-19 burden and deaths with NCD risk factors ($r^2 = 0.51, 0.43$), NCDs ($r^2 = 0.32, 0.16$) and healthcare ($r^2 = 0.52, 0.38$). the current study aim to assess Prevalence and risk factors associate with non-communicable disease after covid 19 among adults of North India.

METHOD AND MATERIAL

Study design: A descriptive cross- sectional design

Study population: Population is the entire aggregate of cases that meet a designed set of criteria. The population in the study comprised of adults who are leaving in rural areas of adhoya, Mullana ,Ambala District.

Sample: adult male and female residing in rural population

Sample: 500

Inclusion Criteria

1. Adult age more than 30 years. 2. Willing to participate, present at the time of data collection

Data collection Data collection tools are the procedures or instruments used by the researcher to observe or measure the key variables in the research problem. The demographic data were collected using a structured baseline proforma prepared by the investigator. Prevalence identifies by family folder data and health Centre data. The risk assessment done by CBAC tool.

Statistical Analysis Data analysis is the systematic organization and synthesis of the research data and the testing of research hypothesis using the data. The data obtained would be analyzed using both descriptive and inferential statistics based on the objectives and hypotheses of the study.

RESULT

Frequency and percentage distribution of demographic characteristics

	N=50				
S.no.	Demographic variable	Frequency	Percentage		
1.	Age(in years)				
1.1	31-40	235	47.%		
1.2	41-50	145	29%		
1.3	51-60	120	24.%		
2.	Gender	200	40.%		
2.1	Male	300	60%		
2.2	Female				
3.	Type Of Family				
3.1	Joint family	221	73.6%		
3.2	Nuclear family	79	26.4%		
4.	Religion				
4.1	Hindu	455	89%		
4.2	Sikh	40	8%		
4.3	Muslim	10	2%		
4.4	Christian	5	1%		
5.	Educational status				
5.1	Primary	155	31.3%		
5.2	Secondary	175	34.7%		
5.3	Graduate	80	15.7%		
5.4	Illiterate	90	18.3%		
6	Occupation				
6.1	Government job	40	8%		
6.2	Private job	90	18%		
6.3	Unemployed	100	20%		
6.4	House holder	270	54%		
7	Income				
7.1	<1129	12	2.3%		
7.2	1130-2259	281	56.3%		
7.3	2260-4765	188	37.7%		
7.4	More than 4766	19	3.7%		
8	Place				
8.1	Semi Urban	15	3.3%		
8.2	Rural	480	96.7%		
9	Dietary pattern				
	, , , , , , , , , , , , , , , , , , ,	1			

S.no.	Demographic variable	Frequency	Percentage	
9.1	Vegetarian	396	79.3%	
9.2	Non-vegetarian	104	20.7%	
10	Family History of NCD			
10.1	Yes	195	39%	
10.2	No	305	61%	
11	History of NCD disease			
11.1	Yes	325	65%	
11.2	No	175	35%	
12	Any surgery done			
12.1	Yes	60	12%	
12.2	No	440	88%	
13	Any medication taking			
13.1	Yes	278	55.6%	
13.2	No	222	44.3%	
14.	Knowledge regarding			
14.1	NCD	350	70.7%	
14.2	Yes	150	29.3%	
	No			
15.	Had history of covid 19			
15.1	Yes	94	18.7%	
15.2	No	406	81.3%	
16.	Have you take covid			
16.1	vaccine	480	96%	
16.2	Yes	20	4%	
	No			
17.	NCD identify after	74	15%	
	pandemic			

Frequency and percentage distribution of NCD risk score

N=500

Sr.no	Level of risk	Range of score	frequency	Percentage	
1	Low risk	0-4	90	18	
2	Moderate risk	5-7	65	13	
3	High risk	8-10	345	69	

Minimum score = 0 maximum score = 10

Risk assessment question	Range		Cbac score		Frequency	Per centage
		39	0		143	47.7%
	40-49		1		87	29%
	more than 50		2		70	23.3%
do you	never			0	215	72
smoke	used to co the p		1		10	3
	dai	ly		2	75	25
do you	ne	С		0	221	74
consume alcohol	ye	s	1		79	26
measurement	Female	male	179	121		
of abdominal	<80 CM	<90	89	58	147	49
girth	80-90 CM	90-100 CM	65	29	94	31
	> 90 CM	<100	25	34	59	20
physical	Ye	es		0	67	23
activities for minimum of 150 min in a week	N	0		1	233	77
family history of NCD	Ye	es		2	137	45.6
	N	0		0	163	54.4

There is significant associate with alcohol consumption and abdominal girth measurement with selected demographic variables.

DISCUSSION

The current study has major public health implications with novel findings regarding the associations between COVID-19 and populations at risk, including the elderly and those with non-communicable diseases. These relationships are more evident in low-income countries, where we found the highest rate of COVID-19 cases and deaths per million when compared to other countries. Although non-communicable/cardiovascular disease DALYs were not independently associated with COVID-19 cases and deaths, the higher prevalence of noncommunicable diseases among the elderly may play a major role in the burden of COVID-19.

In this study, showed that the risk factors like increasing waist circumference, any substance use in life, inability to contact with family while working at sea, poor dietary practice, advancing age, and lower socioeconomic status were significantly associated with NCDs.

CONCLUSION

prevalence of NCD is high day by day in situation both in urban and rural community. With the preventive measure and best policy halt the premature death and further complication. Early assessment and adherence of treatment is very necessary and change in life style and dietary pattern to prevent the NCD.

References

1. ICMR, PHFI, IHME India: Health of the Nation's States-The India State-Level Disease Burden Initiative. New Delhi: ICMR, PHFI, IHME, 2017.

- NCD Risk Factor Collaboration (NCD-RisC) Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021; 398(10304):957–980.doi:10.1016/S0140-6736(21) 01330-1. - DOI - PMC - PubMed.
- Cheng ZJ, Shan J. 2019 Novel coronavirus: where we are and what we know. Infection. 2020; 48:155-163. [PMC free article] [PubMed] [Google Scholar]
- He F, Deng Y, Li W. Coronavirus disease 2019: What we know? J Med Virol. 2020 doi: 10.1002/jmv.25766. Published online March 14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- WHO. WHO Director-general's opening remarks at the media briefing on COVID-19 - 11 March 2020. 2020; published online March 11. https://www.who.int/dg/speeches/detail/who-directorgeneral-s-opening-remarks-at-the-media-briefing-oncovid-19—11-march-2020 (accessed April 23, 2020).
- WHO. WHO/Europe | Past pandemics. 2020. http://www.euro.who.int/en/healthtopics/communicable-diseases/influenza/pandemicinfluenza/past-pandemics(accessed April 24, 2020).
- Martinez R, Lloyd-Sherlock P, Soliz P. Trends in premature avertable mortality from noncommunicable diseases for 195 countries and territories, 1990-2017: a population-based study. Lancet Glob Health. 2020; 8:e511-e523. [PubMed] [Google Scholar]
- Markus HS, Brainin M. COVID-19 and stroke-A global world stroke organization perspective. Int J Stroke. 2020 1747493020923472. [PubMed] [Google Scholar]

How to cite this article:

Pooja Jaswal.(2024). A cross sectional study to assess prevalence and risk factors associate with non-communicable disease after covid 19 among adults of north India. *Int J Recent Sci Res.* 15(01), pp.4500-4502.
