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The present paper deals with a method for studying the dynamic analysis of an offshore structure
having the form of a column partially immersed in a fluid. The non-uniform column carries a
concentrated mass with eccentricity “e” and rotary inertia JM, at its free end. The column is idealized
as a Rayleigh beam supported by translational and rotational springs, at the bottom.

For investigating the dynamic behaviour of the structure under consideration, the effect of the rotary
inertia of the concentrated mass and its eccentricity are all taken into account. Applying the Hamilton
principle, the equation of motion is derived by means ofa set the orthogonal polynomials, which
satisfy the boundary conditions. Taking into account the effects of the kinematic and inertial
parameters of the structure, the roots of the transcendental equation are obtained by employing a
symbolic numerical code. For analysing the influence of the several non dimensional parameters on
natural frequencies values and shape modes, a lot of numerical examples are presented and the results
are validated by making comparisons with the results in literature and reported in bibliography.
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INTRODUCTION
Since one can predict the dynamic behaviours of some structural systems, such as piles, water towers, fixed-type platforms, robot
arms and tall buildings, from tapered beams and columns with reasonable accuracy, several researchers devoted themselves to the
free vibration analysis of such structural models. In offshore and ocean engineering, such structure are usually simplified in analysis
as tapered beam or column partially immersed in a liquid and because of the beam liquid interaction problem is of significance in
these branches of engineering, many authors have been dealt with the dynamic behaviour of these structural systems. In particular,
the analysis of the dynamic behaviour of the structures subjected to seismic actions is fundamental for evaluating their safety and
performance with regard to the earthquakes, wind loads and vibrations. On the other hand, in the modern engineering, it is of utmost
interest to ensure the performance and reliability of the structures with particular attention to the earthquake actions whose effects
can give rise to critical conditions on their structural response. Therefore, the knowledge of the dynamic behaviour of the structural
systems, such as towers, piles, tall buildings, offshore platforms and onshore structure, and the ability to predict dynamic response
from the modal data is of utmost interest in mechanics, ocean and coastal engineering. Because of the wind and waves loads and the
earthquakes actions are the prominent sources of excitation, the calculation of natural frequencies and associated mode shapes
represents a significant preliminary study to evaluate the dynamic response of offshore and onshore structures. For dealing with
analysis of the dynamic behaviour of these structures and finding the free frequencies values, the simplest structural system
employed is a beam/column, having a variable cross-section. The literature regarding the free vibration analysis of beams/columns
is relatively rich and in the majority of the papers, Euler-Bernoulli and Timoshenko uniform and tapered beams were considered.

Assuming the Euler­ Bernoulli hypotheses, in some papers the governing equations have been solved analytically in closed-form,
subjected to the geometrical conditions depending on specific tapering ratios and in which the frequencies are derived in terms of
Bessel functions. For non-uniform beam (particularly the linearly tapered) with tip mass, the reports of Mabie et al. [1], Goel [2],
Abrate [4], Craver et al. [5], Auciello [6], Auciello et al. [7], Auciello [8], Ece et al. [9] and Firouz-Abadi et al. [10] are the most
concerned. In other works, a particular attention has been given to tapered beams with variable characteristics of geometry and
elasticity. For example, Aucielloet al. [11], and Auciello et al.[12] have analysed the free vibration frequencies of a beam composed
of two tapered beam sections, with different physical characteristics and with a mass at its end. The results achieved, by using
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orthogonal polynomials as trial functions, have permitted interventions on geometric parameters so allowing a structural
optimization of the beam with respect to its dynamic behaviour. In offshore engineering, since the dynamic behaviours of the
structures such as piles and towers, surrounded by water, can be predicted from a cantilever beam carrying a tip mass with
reasonable accuracy, the literature concerned is plenty. For example, Uscilowska and Kolodziej [13] have presented closed form,
exact frequency equations and mode shape functions for a partially immersed column with eccentrically located tip mass. The
column under consideration has been modelled as a distributed parameter cantilever with the lumped mass at the top and in the
analysis the rotary inertia of the lumped mass has been taken into account; Wu et al. [14] have calculated the values of the natural
vibration frequencies for a uniform tower offshore, partially immersed in a fluid, elastically supported at the bottom and carrying an
eccentric tip mass with rotary inertia. Moreover in Auciello [15] the free vibration analyses of variable circular cross section
column, carrying a tipmass and partially immersed in fluid, has been studied. The closed form solution has been expressed in terms
of Bessel functions. Recently, De Rosa et al. [16] have investigated the dynamic behaviour of an offshore structure, having the form
a column partially immersed in liquid, and have obtained, by means of the improved conventional analytical solution, the roots of
the transcendental frequency equations; in the analysis, the influence of the various parameters, as rotary inertia of the concentrated
mass and its eccentricity, has been examined.

Many approximated solutions have been developed by numerous authors for Euler­ Bernoulli and Timoshenko uniform and tapered
beams. For example, Nagaya and Hay [17] propose a method for solving seismic response problems of a pile of variable cross
section with a tip inertia subjected to a sea bottom seismic displacement. The method includes use of Fourier series expansion, the
Laplace transform, the transfer matrix method and the residue theorem in order to deal with the complex seismic displacement and
arbitrarily shaped piles. Chang and Liu studied the natural frequencies of immersed restrained column subjected to an axial force
using transfer matrix method and compared the results with some analytical solutions. Recently, the same problem proposed by
Uscilowskaet al. [13] has been studied by Oz [18], who have used the numerical results of the conventional finite element method
(FEM) to check the analytical (exact) solutions.

In this paper, assuming the Rayleigh hypotheses, the dynamic behaviour of an offshore tower partially immersed in liquid (water)
has been studied. The tower, under consideration, consists of two span beams: for convenience, the immersed beam (in contact with
water) is called the “wet” beam, and the other part (a beam without contact with water) is called the “dry” beam, which represents
the special case of the “wet” beam.

The frequency equations and mode shapes are obtained by formulating equations of motion for each of two span beams of the
column. The roots of the transcendental frequency equations have been obtained by means of the approximate procedure and the
solutions have been obtained by employing Rayleigh-Ritz (R-R) method; in the analysis the influence of the various kinematic and
inertial parameters is examined. Some of the results are presented in tabular and graphical form and compared with the solutions
available for the case under consideration and presented by other authors and reported in bibliography.

Formulation of the problem
Let us consider the variable cross section tower in Fig. 1, whose total span L can be divided into a partial span L1 = aL,totally
immersed, and a partial span L2 = (1-a) L, which is considered to be dry. The mass density of the immersed part (in contact with
water) is equal to (ρw+ρ), where ρw represents the added mass density of fluid so as defined by Uscilowska and Kolodziej [13], while
ρ is the mass density of dry part of the beam. The formulation of the structural system under consideration has been firstly studied, by
Chang and Liu, in [19], and developed later by the other authors.

The material is supposed to obey to the Hooke law, with Young modulus E, at the top the tower has an eccentric mass M and rotary
inertia JM, whereas at the bottom the tower is supported by elastic constraints, with rotational stiffness kR and translational stiffness kT.
For the column under consideration, the cross sectional area A(x) and moment of inertia I(x) are given by the following relations:

   1 1( ), ( ) , 0 ,A x A H x I x I G x x L    (1)

where A1 e I1 are the cross sectional area and moment of inertia of the beam, for x=0, respectively.
Applying the Hamilton Principle, the dynamic behaviour of the column is described by the following relation

2
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where T and U are the kinetic and potential energy, respectively.
Assuming the Rayleigh beam model and taking into account the rotary inertia, the kinetic energy is given by:
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where .
d w

w
dt



Similarly, the total potential energy of the system U=UB+UF is given by sum of two terms: the first is due to bending deformation of
the beam and the second is due to constraint, stiffnesseskR and kT. In particular
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is the elastic energy of the beam and
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U w dx  (5)

is the potential energy due to the axial force F, which can be applied to the free end.

Separating the variables, the displacement function can be written as:

( , ) ( ) ,i tw x t w x e  (6)

In order to reduce the continuous problem to a classical holonomic system with a discrete number of Lagrangian coordinates
(MDOF), one assumes that the transversal displacements are a linear combination of N independent functions which satisfy the
boundary equations. Using a classical Rayleigh-Ritz method (R-R), the displacement functions are chosen in form of orthogonal
polynomials φiobtained by the Gram-Schmidt method, as shown in Rektorys[20].

In the approximate formulation, the transversal displacements assume the following form:
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where qi are generalized coordinates.
The substitution of Eq. (7) into Eq. (3) leads to the following form for the elastic energy:
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or in synthetic form:
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while the potential energy, due to the axial force F, assumes the form:

, ,

0

1 1

2 2

L
T T T

F x xx FU F dx F K q φ φ q q (12)



Auciello N.M. and Lippiello M. Natural frequencies of an immersed rayleighbeam carrying an eccentric tip mass with mass
moment of inertia

2619 | P a g e

The total potential energy can be written as:

 1 1
,

2 2
T T

B F UU F  q Κ K q q Κ q (13)

where the stiffness matrix KU contains the contribution of the bending strain energy, of the constraints stiffness and the flexural

deformation energy, stiffness of constraints and axial force F.

Substituting Eq. (7) into Eq. (3), the kinetic energy T becomes:
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and in matrix form, it can be written:
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Finally, the kinetic energy can be written as:
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Finally, the functional Φ is written as:



International Journal of Recent Scientific Research Vol. 6, Issue, 2, pp.2616-2624, February, 2015

2620 | P a g e

 21
.

2
T

U  q K M q (28)

The stationary condition of the functional of Eq. (2) leads to the following eigenvalues problem:

 2 0.U  K M q (29)

The free vibration frequencies are given by calculating the roots of the characteristic polynomial as follows:

 2det 0.U  K M (30)

NUMERICAL RESULTS AND DISCUSSION
From a numerical point of view, it is convenient to introduce the following non-dimensional parameters:
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where M is the eccentric mass, with rotary inertia JM , applied to free end. The whole mass of  the beam is written as:

1 .tM A L (32)

The polynomial functions φi of the Eq. (7), obtained by means of the fundamental and normality conditions, are given by the
following relations:

,0, 0, at 0T R

w
k w w k w 



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

, (33)

From Eq. (28), the first polynomial φ1 is obtained, and by employing the Gram-Schmidt procedure, all the other polynomial functions
and free frequencies values can be obtained by a general code developed in Mathematica [21].

Table 1Comparison of first three natural frequencies of uniform Euler-Bernoulli (E-B) beam; ε=0, ν=0.887, d=0, rH=0
with KT=KR=0.

  Uściłowska et al. [13] Present
 k  a λ λ λ λ λ λ
   0      
         
 1/2        

 1/2        

Table 2 Non-dimensional frequencies for uniform Rayleigh as a function of the slenderness ratio rH; ε=0, a=0; ν=0.887,
d=0, KT=KR=0 and μ=1.

k=0 (E-B) rH=1/30 rH=1/10 rH=1/5 rH=1/2
λ     
λ     
λ     
λ     
λ     

k=1 (E-B) rH=1/30 rH=1/10 rH=1/5 rH=1/2
λ     
λ     
λ     
λ     
λ     



Auciello N.M. and Lippiello M. Natural frequencies of an immersed rayleighbeam carrying an eccentric tip mass with mass
moment of inertia

2621 | P a g e

In the present paper, the dynamic behaviour of the column, partially immersed in liquid (water), has been studied by means of the
Rayleigh model. The numerical results are validated by making comparisons with the results in literature and reported in
bibliography.
For numerical computations, one considers a variable cross-section beam (tapered beam) whose cross sectional area and moment of
inertia are represented by the following expressions:

   1 1( ), ( ) , 0 1.A A H I I G        (34)

where

       2 4
1 , 1 .H G         (35)

The coefficient ε can assume the following values:

 ε=0 the uniform cross section beam for total length;
 ε> 0 the cross section beam assumes a decreasing function;
 ε< 0 the cross section beam assumes an increasing function.

Uniform beam for ε=0

Assuming the Euler-Bernoulli hypothesis, the first numerical example deals with the dynamic analysis of an uniform beam.
Neglecting the axial force effect, (P=0), and setting rH→0 (slenderness ratio) and ε=0, the free frequencies values are calculated. The
same structure has been already solved in Uściłowska and Kołodziej, [13], using an exact approach and the first three natural
frequencies values are reported in Table 1 and they are compared with the results obtained by using the present approximate
procedure. As shown, the approximate procedure gives free frequencies values which numerically coincide with the results obtained
in [13]. Moreover, for the higher vibration modes, the discrepancies between the exact and approximate procedure do not appear to be
relevant. In the Table 2, for μ=1 and a=0, the non-dimensional free frequencies values for an uniform Rayleigh beam model, as a
function of the slenderness ratio rH, are reported. One can see that the natural frequencies decrease for increasing values of the
slenderness ratio parameter rH; in particular, the Rayleigh beam model gives the non dimensional natural frequencies values lower
bounds to the corresponding values obtained by using the Euler-Bernoulli (E-B) model. In Table 3, the first five free frequencies
values are listed for tapered ratio a equal to 1/2. In the Euler-Bernoulli beam model (E-B) and for rH>0, the free frequencies values
are higher than the values obtained with the Rayleigh beam model and for rH =1/2. Taking into account the first free frequencies λ1

the discrepancies between the Euler- Bernoulli theory and the Rayleigh theory are 5,26 %, if a=0,and 5,33 %, if a=1/2.

Table 3 Non-dimensional frequencies for uniform Rayleigh as a function of the slenderness ratio rH; ε=0, a=1/2, ν=0.887,
d=0, KT=KR=0 and μ=1.

k=0 (E-B) rH=1/30 rH=1/10 rH=1/5 rH=1/2
λ     
λ     
λ     
λ     
λ     

k=1 (E-B) rH=1/30 rH=1/10 rH=1/5 rH=1/2
λ     
λ     
λ     
λ     
     

Table 4 Non-dimensional frequencies for non-uniform Rayleigh beam; k=0, ν=0.887, d=0, KT=KR=0 and μ=1.

k Chang et al. (E-B), [19] Present (E-B) Present rH=1/30 Present rH=1/10
 a λ λ λ λ λ λ λ λ λ λ λ λ
             
             
             
 0            
 0,5            
 1            
 0            
 0,5            
 1            
 0            
 0,5            
 1            
 0            
 0,5            
 1            
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In Figure 2, the first three free frequencies are plotted, for different values of the rH parameter. If rH->0, the discrepancies between the
Euler- Bernoulli theory and the Rayleigh theory, if rH≠0, appear to be relevant. When the slenderness ratio increases, the higher free
frequencies decrease; if μ, k parameters, relative to tip mass, increase, the free frequencies decrease.

Table 5 Non-dimensional frequencies for non-uniform Rayleigh beam; k=1, ν=0.887, d=0, KT=KR=0 and μ=1.

k Chang et al.[(E-B), [19] Present (E-B) Present rH=1/30 Present rH=1/10
 a λ λ λ λ λ λ λ λ λ λ λ λ
             
             
             
 0            
 0,5            
 1            
 0            
 0,5            
 1            
 0            
 0,5            
 1            
 0            
 0,5            
 1            

Fig. 1 Offshore structure under consideration

Fig. 2 Natural frequencies of vibration of uniform beam for various parameters rH; ν=0.887, d=0, k=0, KT=KR=0.
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Tapered beam for ε>0

Assuming Euler-Bernoulli hypothesis, let us consider a variable cross section beam with positive taper parameter. The problem of
vibration frequencies has been solved by Chang et al. [19] employing transfer matrix method. The obtained results are validated by
making comparisons with the results calculated using the presented method and by assuming rH=0, μ=1 and for different values of k.
The numerical comparison is illustrated in Table 4 and the obtained results show an excellent agreement, if rH=0. For the Rayleigh
beam theory, with rH≠0, the natural frequencies are always lower bounds and the discrepancies increase if rH parameter increases.
This behaviour occurs also for different values of μ and a parameters, so as shown in Figures 4 and 5. Considering the tapered beam,
with ε≠0, the first natural freee frequencies, λ1, depend on the proposed beam model. Comparing Euler- Bernoulli (E-B) model, with

Fig. 3 Natural frequencies of vibration of uniform beam for various parameters rH; ν=0.887, d=0, k=0, KT=KR=0.

Fig. 4 Natural frequencies of vibration of tapered beam for various parameters rH; ν=0.887, d=0, k=0, KT=KR=0.

Fig. 5 Natural frequencies of vibration of tapered beam for various parameters rH; ν=0.887, d=0, k=0, KT=KR=0.
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rH->0, and Rayleigh beam model, with rH=1/10, the frequencies decrease up to about 1,62 %. As shown and taking into account the
rotary of inertia effect, the Rayleigh beam theory gives a model closer to the real structure.

Finally, in Table 5 the dynamic behaviour of Rayleigh beam has been analyzed varying the rotary inertia of tip mass. In particular, for
μ =1 and for k > 0, the first three frequencies decrease and the phenomeno not does depend on the taper law of the cross section.

CONCLUSION
In this paper the dynamic analysis of tapered column partially immersed in water has been deduced. Based on the Rayleigh beam
theory, the free vibration problem is solved by employing the approximated procedure which is based upon the Hamilton Principle
and assuming as tentative functions the set of the orthogonal polynomials satisfying the fundamental conditions. The equations of
motion are written by numerical code developed in Mathematica, andthe free frequencies are calculated by means of the Newton
bisection method and so that the obtained results are validated by making comparisons with the results in literature and reported in
bibliography.

Also it is demonstrated in the numerical routine that, the present technique is quite simple and converges quickly to the exact solution
with very small computational effort and resources. Furthermore, the Rayleigh theory (R-B) is proved to give very accurate results in
comparison with the Euler-Bernoulli (E-B) theory. Thus, this study demonstrates the reliability and convenience of the application of
the Rayleigh theory (R-B). The natural frequencies are in excellent agreement with published results. Though for comparison
purposes, the natural frequencies are kept accurate to the fourth decimal places, the precision of the natural frequencies can be
increased and made as high as desired.
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