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In the present paper, the free vibration response of single-walled carbon nanotubes (SWCNTs) is
investigated. The governing equations of motion are derived using a variation approach and the
free vibration frequencies are obtained employing two different formulations. In the first part of
the paper, the case of the cantilever nanotube with concentrated mass at its free end, in the
presence of nonlocal effects, is considered and the Hamilton principle is reformulated, in order
to find the equation of motion and the boundary conditions; it turns out that they are the same
limit conditions obtained by Reddy and Pang, using a direct approach. In the second one,
instead, by employing two different approaches two approximate formulas are deduced the first
one is derived by applying the Rayleigh Principle, as defined to Meirovitch, whereas the second
approximate formula is derived by a formulation given in energy terms.

Numerical examples end the paper and some comparisons with existing results are offered.
Comparisons of the present numerical results with those from the open literature show an
excellent agreement.
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INTRODUCTION
Carbon nanotubes (CNTs) constitute a prominent example of nonmaterial’s and nanostructures and their discovery by Iijima
(1991) has stimulated several studies in nanotechnology applications and nano-scale engineering materials. Several studies related
with CNTs (Dai et al, 1996; Falvo et al, 1999; Dharap et al, 2004) have shown that the carbon nanotubes have extraordinary
mechanical and physical properties and in addition to the large respect ratio and low density have made carbon nanotubes (CNTs)
ideal components of nanodevices. The outstanding properties of CNTs have lead to their usage in the emerging field of
nanoelectronics, nanosensors and nanocomposites, in which the vibration characteristics of CNTs are significant.

The theoretical approaches such as elastic continuum mechanics, as well as molecular dynamics (MD) simulations are used for
simulating vibration behaviours of CNTs. Since the MD simulation involves complex computational processes and is still
formidable and expensive, especially for large-sized atomic system, continuum models play an essential role in the study of CNTs.
Several researchers implemented the elastic models of beams to study the dynamic problems, such as vibration and wave
propagation, of carbon nanotubes (De Rosa and Lippiello, 2014a; Yoon et al, 2002; Yoon et al, 2003). Although the classical
continuum methods are efficient in performing mechanical analysis of CNTs, their applicability to identify the small-scale effects
on carbon nanotubes mechanical behaviours is questionable. The importance of size effect has been pointed out in a number of
studies where the size dependence of the properties of nanotubes has been investigated. For example, Sun and Zhang (2008)
discussed the scarce applicability of continuous models to nanotechnology and proposed a semi-continuum model in studying
nano-materials. The authors demonstrated that the values of the Young’s modulus and Poisson’s ratios depend on the number of
atom layers in the thickness direction. These results show that the nanostructures and nanomaterials cannot be homogenized into a
continuum. At this point, the non-local elastic continuum models are more pertinent in predicting the structural behaviour of
nanotubes because of being capable of taking in to account the small-scale effects. It is well-known that the non-local elasticity
theory assumes that the stress state, at a given reference point, is considered to be a function of the strain field at all points of the
body. The origins of the non-local theory of elasticity go to pioneering works, published in early 80s, by Eringen (1983). In
(Reddy, 2007), Reddy reports a complete development of the classical and shear deformation beam theories using the non-local
constitutive differential equations and derived the solutions for bending, buckling and natural frequencies problems of simply
supported beams.

In recent years, many researchers have applied the non-local elasticity concept for the bending, buckling and vibration analysis of
nanostructures by applying Euler-Bernoulli beam and shell theories and Timoshenko beam theory, in CNTs, (Pieddieson et al,
2003; Ghannadpour et al, 2013; Pradhan et al, 2009; Wang et al, 2006; Ansari and Sahmani, 2012; Shakouri et al, 2009;
Ehteshami and Hajabasi, 2011; Wang et al, 2007; Hemmatnezhad and Ansari, 2013). It is worth mentioning that, in literature, most
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of the attention has been focused on deriving the variational formulation of equations and boundary conditions for a multiwalled
nanotubes undergoing vibrations with non-local elastic continuum methods (Adali, 2010). Reddy and Pang (2008) reformulated the
equation of motion of the Euler-Bernoulli and Timoshenko beam theories, using the non-local differential constitutive relations of
Eringen. In Adali (2010), the kinetic energy, due to non local effects, is derived; the natural and geometric boundary conditions are
obtained which lead to a set of coupled boundary conditions, due to nonlocal effects. If one considers a cantilever nanotube, the
free vibration analysis leads to the boundary conditions which are different by those obtained according to the geometric
formulation of Reddy-Pang (2008), or according to the virtual displacement approach, as sketched by Reddy (2007).

In the Additamentum I de curvis elasticis Euler said:

(…)Cum enim Mundi universi fabrica sit perfectissima, atque a Creatore sapientissimo absoluta nihil omnino in mundo contingit,
in quo non maximi minimive ratio quaepiam eluceat:

quamobrem dubium prorfus est nullum, quin omnes Mundi effectus ex causis finalibus, ope Methodi maximorum & minimorum
aeque feliciter determinari queant, atque ex ipsis causis efficientibus.(…)
(…) Imprimis autem opera est adhibenda, ut per utramque viam aditus ad Solutionem aperiatur:

sic enim non solum altera Solutio per alteram maxime confirmatur, sed etiam ex sutriusque consensum percipimus voluptatem
(…).

Therefore, the study of natural phenomena can be done by following two approaches: the first one through the analysis of the
actual causes, the so-called direct method, and the second approach by means of final causes. The two methods should lead to the
same results.

Starting from this point of view, in the first part of the present paper, the case of the cantilever nanotube, with concentrated mass at
its free end, in the presence of nonlocal effects is considered and the Hamilton principle is reformulated, in order to find the
equation of motion and the boundary conditions, which result to be the same limit conditions obtained by Reddy and Pang (2008),
using a direct approach.

Because of the CNTs is ultralight and is highly sensitive to its environment changes, many researchers have explored the potential
of using CNTs as nanomechanical resonators in atomic-scale mass sensor. For example, Wu et al (2006) investigated the resonant
frequency and mode shapes of a single-walled carbon nanotube (SWCNT) based mass sensor. Georgantzinos and Anifantis (2010)
predicted the vibrational behaviour of single and multiwalled carbon nanotubes (MWCNTs) when a nanoparticle is attached to
them by using a spring-mass-based finite element formulation.

Elishakoff et al (2013) studied the vibrations of a cantilever double-walled carbon nanotube (DWCNTs) with attached bacterium
and the effective stiffness and mass of a DWCNT mass sensor. Mateiu et al (2005) developed an approach for building a mass
sensor based on MWCNTs. At present, CNTs have been utilized as nanosensors and electromechanical sensing system.

Nanosensors are simple engineering devices designed to detect and convey informations about nanoparticles and biomolecules.
The nanosized mass sensors are based on the fact that the resonant frequency is sensitive to the resonator and the attached mass.
The change of the attached mass on the resonator causes the resonant frequency to deviate from its original value.

The key challenge in mass detection is in quantifying the changes in the resonant frequencies due to the added masses. Recently,
mass detection based on the resonating nanomechanical tools has been subject of growing interests as for example in ( Chowdhury
et al, 2009; Murmu and Adhikari, 2012).

This paper makes the effort to study the resonant frequencies of a SWCNT with an attached nanoparticle, and nonlocal elasticity
theory is applied to analyze the vibrational behavior. In (Adhikari and Chowdhury (2010), the Authors examined the potential of
single-walled CNTs as biosensors using a continuum mechanics-based approach and derived a closed-form expression to calculate
the mass of biological objects from the frequency shift. In the second part of the present paper, by employing two different
approaches two approximate formulas: are deduced the first one is derived by applying the Rayleigh Principle, as defined to
Meirovitch (2001), whereas the second approximate formula is derived by a formulation given in energy terms.

MATERIALS AND METHODS
Hamilton principle for SWCN

Let us consider a cantilever nanotube (Fig 1) with span L, cross sectional area A, second moment of area I, Young modulus E,
mass density and concentrated mass M at its free end.

Figure 1 The structural system under consideration
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According to Hamilton Principle it is possible to write:
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is the total potential energy, Le is the strain energy of the nanotube, and P is the potential energy of the inertial force

due to the additional displacement , where e0 is a constant which has to be experimentally

determined for each material, a is an internal characteristic length.

The first variation of these two energies can be easily calculated as:
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A series of integration by part can be conducted on the terms of eq. (6), leading to:
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v z,t v z,t v z,t
EI A A 0,

z t z t
e a  

  
  

   
(13)

together with the following general boundary conditions

       
3 3

2
0 2 3

v z,t v z,t
A EI v z,t 0 z 0,

t z z
e a  
  

       
(14)

       2 2
2

0 2 2

v z,t v z,t v z,t
A +EI 0 z 0,

zt z
e a  

   
       

(15)

         
3 3 2

2
0 2 3 2

v z,t v z,t v z,t
A +EI M v z,t 0 z L,

t z z t
e a  

   
         

(16)

       2 2
2

0 2 2

v z,t v z,t v z,t
A EI 0 z L.

zt z
e a  
   

       
(17)

At the left end (z=0) the boundary geometric conditions of the cantilever nanotube impose  v z 0,t 0  and  v z 0,t
0

z

 



,

and at right end z = L the boundary equilibrium conditions are entirely coincident with the conditions given by Reddy and Pang
(2008), in the absence of concentrated mass, using a direct approach.

Rayleigh quotient - first approach

Let us start with the differential eq. (13), where the variables can be separate as follows:

     v z,t v z Cos t (18)

Eq. (18) can be inserted in the equation of motion (eq. (13)), which in turn can be integrated between 0 and L. Finally, it is possible
to insert a trial function y(z), leading to:

             
4 2

L L L22 2
04 20 0 0

v z v z
EI y z dz A y z dz Av z y z dz 0.

z z
e a   

 
  

    (19)

Two successive integrations by part can be performed:
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           

           

L4 3 3
L L

4 3 30 0
0

L L3 2 2 2
L

3 2 2 20
0 0

v z v z v z y z
EI y z dz EI y z EI dz

zz z z

v z v z y z v z y z
EI y z EI EI dz;

zz z z z

    
   

    

       
    

         

 



(20)

and:

           

           

           

L2
L 2 22 2

0 020
0

L
L 2 22 2

0 00
0

L 2
L2 22 2

0 0 20
0
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A dz A y z

z z z

y z y z
Av z Av z dz;

z z

e a e a

e a e a

e a e a

   

   

   

  
    

   
     

  
   






(21)

so that eq. (19) becomes:

             

       

           

2 2 2
L L L22 2

02 2 20 0 0

L L3 2

3 2

0 0

L L
2 22 2

0 0

0 0

v z y z y z
EI dz Av z dz Av z y z dz

z z z

v z v z y z
EI y z EI

zz z

v z y z
A y z Av z 0.

z z

e a

e a e a

   

   

  
  

  

     
    

       

    
        

  

(22)

The boundary conditions at the right end permit to simplify the previous equation:

             

             

     

2 2 2
L L L22 2

02 2 20 0 0

3 2
22

03 2

22
0

v z y z y z
EI dz Av z dz Av z y z dz

z z z

v L v L y L v L
EI y L EI A y L

z zz z
y L

Av L 0;
z

e a

e a

e a

   

 

 

  
  

  
   

  
  






  

(23)

whereas the free end will be subjected to the following equilibrium conditions:

       
3

22 2
0 3

v L v L
A EI Mv L 0,

z z
e a  

 
  

 
(24)

     2
22

0 2

v L
Av L EI 0.

z
e a 


  


(25)

Finally, eq. (23) reduces to:
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         

       

2 2 2
L L 22

02 2 20 0

L2 2

0

v z y z y z
EI dz Av z dz

z z z

Av z y z dz Mv L y L 0,

e a 

  

  
 

  

 

 


(26)

and the frequency 2 can be written downputting y(z) = v(z), as:

   

         

2 2
L

2 202
2

L L2 2 2
0 20 0

v z y z
EI dz

z z .
v z

Av z dz Av z dz Mv L
z

e a



 

 

 


  




 
(27)

Nonlocal resonance frequency of CNT with attached mass - first method

In the following, an approximate displacement is assumed:

   2

3

z 3L z
v z ,

2L


 (28)

So that eq. (27) gives the approximate frequency value:

3
2

2

3EI

L ,
33 3 Lm

Lm M
140 10





 

  
 

(29)

Where , m = A and the resonant frequency can be approximated as:

, (30)

It is also possible to express the resonant frequency as a function of three calibration constants Ck, Cn1, Cm. It will be:

3

n1 2

3EI 140
1 33LmL

2 M 140 3 Lm 140
1

Lm 33 10 33Lm

f
 


 
  

 

, (31)

so that:

k
n1 2

m n1

C1

2 1 C M C
f


 


  

, (32)

where

4

k n1 m

M EI
M ;

Lm L m

140 14 140
C ; C ; C .

11 11 33

  

  

(33)
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2 2 33 3 Lm
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  
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 
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 



International Journal of Recent Scientific Research, Vol. 6, Issue, 1, pp.2355-2365, January, 2015

2361 | P a g e

Nonlocal resonance frequency of CNT with attached mass - Second method

In this case, let us start from the energy terms:

   2 2
L

0

v z,t v L, t1 1
T A dz M

2 t 2 t

    

        
 , (34)

       
22 2 2
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e a 

   
        

  (35)

and let us assume the separation of variables

     v z,t v z Cos t (36)

so that the energies read:
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0
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    (37)
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22 2

L L 22 2 2
e 02 20 0
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  (38)

The maximum kinetic energy will be equal to the maximum total potential energy, so that:

           
22 2 2 2L L L2 2 22
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   (39)

and the frequency 2 can be deduced as:

 
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22
L

20
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
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 
(40)

Nonlocal resonance frequency of CNT with attached mass

The same approximate displacement is assumed:

   2

3

z 3L z
v z

2L




(41)

which leads to the following approximate frequency value:

(42)

and the approximate resonant frequency is now given by:
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or:

(44)

where the three calibration constants Ck, Cn2, Cm are given by:

k n2 m
140 28 140

C ; C ; C .
11 11 33

   (45)

Nonlocal sensor equation

In this section one will derive the general expression of the added mass on the relative frequency-shift of the SWCNT (Murmu and
Adhikari, 2012). Using eq.(32) and eq. (44) the resonant frequency, without the added mass, is given by:

k
n0

C
,

2
f




 (46)

the frequency shift can be written as:

n0
n0 ni 2

m ni

, i 1, 2
1 C M C

f
f f f


    

  
, (47)

or the relative frequency shift:

2
n0 m ni

1
1 ,

1 C M C

f

f 


 

  
(48)

So that the relative added mass is defined:

2 ni
2

m m

m
n0

C1 1
M

C C
C 1

f

f

   
        

(49)

Using equation (33) it is possible to calculate:

 

2
2k ni

2
m m mk

C CLm Lm
M Lm .

C C CC 2 f




 
  

 
(50)

This is the general equation for the calculation of the added mass, where the nonlocal calibration constants are given by:

n1 n2
14 28

C ; C
11 11
  (51)

they depend on the first or second method.

Numerical examples

As a matter comparisons, the nanotube given by (Mehdipour et al, 2011) will be studied, whose geometrical and material
properties are given in Table 1:

In the Table 2 the resonant frequency values are given, for increasing values of the attached concentrated mass and in

the absence of nonlocal effects. The first and second column of (Mehdipour et al, 2011) gives the exact values, as obtained by
solving the boundary value problem; the third column refers to the approximate method CDM, the well-known Cell Discretization
Method, (De Rosa and Lippiello, 2014b). Increasing values of the attached concentrated mass lead to decreasing values of the first
frequency value.

k
n2 2

m n2

C1

2 1 C M C
f 

 


  

n 2
f 




Table 1 Geometrical and material properties of the nanotube under consideration
SWCNT properties density Symbol Value Unit

Inner diameter D1 18.8 10-9 m

Outer diameter D2 33 10-9 m

Length L 5.5 10-6 m

Density  1300 Kg/m3

Young’s modulus E 32 109 Pa
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In the following Tables 3 and 4, the frequency values fn are given, for increasing values of the attached concentrated mass. The
second column gives the exact values, as obtained by solving the boundary value problem, the third column refers to the
approximate formula eq. (32), and finally the fourth column refers to the approximate formula eq. (44). The Table 3 assumes a

nonlocal parameter = 0.1, whereas the Table 4 has been obtained for  = 0.5. As obvious, the approximate values are always
greater than the true frequencies, but the approximate frequencies given by eq. (32) are always better than their counterparts given
by eq. (44).

Let us consider a zigzag (5,0) single-walled carbon nanotube (SWCNT), in Fig 2, as a biosensor. The length of SWCNT is equal to
8.52 nm.

Applying the eq. (30), one gets:

Table 2 First resonant frequency for various values of the attached mass

M (fg) (30)
Exact value


CDM


0 861556.099 861553.410

20 190401.785 190401.785 190401.630
22 181934.726 181934.727 181934.547
24 174505.207 174505.207 174504.928
26 167917.297 167917.297 167917.161
28 162023.235 162023.236 162023.048
30 156709.208 156709.202 156709.003
35 145419.280 145419.280 145419.165
40 136263.504 136263.504 136263.382
50 122175.371 122175.371 122175.239

Table 3 First resonant frequency for various values of the attached mass and  = 0.1
M (fg) Exact Eq. (32) Eq. (44)

20 190458 190465 190523
22 181984 181990 182040
24 174549 174553 174598
26 167956 167960 168000
28 162058 162061 162097
30 156741 156744 156776
35 145445 145447 145472
40 136284 136286 136307
50 122190 122191 122206

Table 4 First resonant frequency for various values of the attached mass and  = 0.5.

M (fg) Exact Eq. (32) Eq. (44)
20 191851 191862 193349
22 183198 183207 184500
24 175619 175626 176765
26 168909 168915 169927
28 162914 162919 163827
30 157515 157519 158339
35 146063 146065 146718
40 136792 136794 137331
50 122556 122557 122943

Figure 2 The relative frequency shift for various values of the attached mass and  = 0,

9

9

2 10

8.52 10










,  = 0.5, applying to the calibration constants

eq. (33).



International Journal of Recent Scientific Research, Vol. 6, Issue, 1, pp.2355-2365, January, 2015

2364 | P a g e

2
n0 m n1

1
1 ,

1 M C C

f

f 


 
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(52)

which is nearer to the exact values and, varying the M parameter, it is possible to obtain the relative frequency shift
n 0

.
f

f



Generally, for carbon nanotubes, it is observed that the nonlocal parameter (e0a) is considered within the range
and, in the example under consideration, this parameter corresponds to the nondimensional factors

whose range is 0 2.34742  and for a length of the nanotube L = 8.52 nm. In Fig 2 three curves are reported corresponding

to a values of M between 0 M 0.4  and  = 0,  = 0.234742 and finally, for a higher value of the non-dimensional nonlocal
effect,  = 5.

The plot shows that if the nonlocal effect is introduced the relative frequency shift decreases and the curves are located to the left

of that obtained to setting  = 0.

Solving the eq. (13) and calculating the relative frequency shift, 0/ nf f where fn0 is the value obtained to a clamped nanotube, in

the absence of mass and nonlocal effect, and by means exact method, in Fig 3 are reported the relative curves.

As one can see the plots are coincident and confirm the exactness of the approximated method.

CONCLUSION
In the first part of the present paper, the exact formulation of Hamilton Principle for a SWCNT, in presence of nonlocal effects, is
presented. Interestingly, this energy approach gives the same boundary problem is obtained by using the geometric method (Reddy
and Pang, 2008). Of course, the approach is extendable to nanotubes that are based upon the Timoshenko theory.
In a second phase of the present paper the approximate method of the Rayleigh quotient has been applied in order to obtain the first
approximate frequency; finally using the definitions of kinetic and potential energies, an approximate method has been employed,
which also provides the first approximate frequency value depending on the particular coefficients of caliber. Finally, on the basis
of the theory already developed in (Murmu and Adhikari, 2012), it is possible to deduce the value of the added mass.
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