

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 5, Issue, 12, pp.2230-2235, December, 2014 International Journal of Recent Scientific Research

RESEARCH ARTICLE

SOME MORE RESULTS ON SOFT PREOPEN SETS IN SOFT TOPOLOGY

¹Mrudula Ravindran and ²Filsy Francis.V

^{1,2}Department of Mathematics, C.M.S. College of Science & Commerce, Coimbatore, Tamil Nadu, India

ARTICLE INFO	ABSTRACT
Article History: Received 8 th , November, 2014 Received in revised form 17 th , November, 2014 Accepted 4 th , December, 2014 Published online 28 th , December, 2014	The aim of this paper is to define soft pre-neighbourhood, soft pre-frontier and soft pre-exterior and study their basic properties. Several important results relating soft pre-interior, soft pre-frontier and soft pre-exterior are established and characterized some results on soft preopen setsin soft topology. An attempt is made to arrive at further results on soft preopen sets.

Key words:

Soft pre-neighourhood, soft pre-limit point, soft pre-exterior, soft pre-frontier.

INTRODUCTION

Soft set is parametrized general mathematical tools which deal with a collection of approximate descriptions of objects. In 1999, Russian researcher Molodtsov [14] introduced the concept of a soft set as a new approach for modeling uncertainties. In 2011, Shabir and Naz [15] initiated the study of soft topology. Cagmen et al[16] defined basic notions and concepts of soft topological spaces such as soft open and soft closd sets, soft interior, soft closure, soft basis, soft neighbourhood of a point, soft limit point of a soft set, soft difference and soft compliment. Also they established several properties of these notions. In 1982, A.S. Mashhour et al [11] have defined the notion of preopen sets in general topology. The concepts of preclosure and preinterior of a set are also due to A.S.Mashhour et al[12]. Navalagi[23], in 2002, has defined preneighbourhoods, pre-interior point, pre-limit point, pre derived set and prefrontier of a set. G.Navalgi proved some results on preopen and preclosed sets. Also she defined preexterior of a set and studied some of its properties. Mrudula Ravindran[24] introduced soft preopen sets and proved some of its properties. In this paper further results on soft preopen sets and soft preclosed sets are characterized.

Preliminaries

Definition1 ([14])

Let U be an initial universe set and E be the set of parameters .Let P (U) denotes the power set of U and AN \subset E. A pair (F, A) is called a *soft set over U*, *where* F is a mapping given by **F: A** P(U).

In other words, a soft set over U is a parametrized family of subsets of the universe U.

Definition 2([15])

Of the set of parameters E, then is said to be a soft topology on U if

© Copy Right, IJRSR, 2014, Academic Journals. All rights reserved.

- 1. The null soft set (W,A) and absolute soft set (U,A) belong to
- 2. The union of any number of soft sets in belongs to
- 3. The intersection of any two soft sets in belongs to .
- 4. The triplet (U, ,A) is called soft topological space over U. The members of are called soft open sets in U and complements of them are called soft closed sets in U.

Definition 3 (Cartesian product of two soft sets) [26]

Let (F, A) and (G,B) be two soft sets over a common universe U, then the cartesian product of these two soft sets is denoted by $(F, A) \times (G, B)$ and is defined by $(F, A) \times (G,B) = (H, A \times B)$ where $H(a,b) = F(a) \times G(b)$.

Definition 4([22])

Let (U, A, \ddagger) be a soft topological space and let (G,A) be a soft set . Then

- I. The soft closure of (G,A) is the soft set
- II. $\widetilde{s} cl(G, A) = \bigcap \{(S, A): (S, A) \text{ is soft closed and} (G, A) \subset (S, A)$
- III. The soft interior of (G,A) is the soft set $\widetilde{s} \operatorname{in} t(G,A) = \widetilde{\bigcup}_{\{(S,A):(S,A) \text{ is soft open and} (S,A) \subseteq (G,A)\}}$

Definition 5([24]) Soft preopen sets

In a soft topological space (U, A,), a soft set

- I. (G, A) is said to be soft preopen set if (G, A) $\cong \widetilde{s} \operatorname{in} t(\widetilde{s} \operatorname{cl}(G, A))$
- II. (F, A) is said to be soft preclosed set if (F, A) $\Im \tilde{s} cl(\tilde{s} \operatorname{in} t(F, A))$

A soft preclosed set is nothing but the complement of a soft preopen set

* Corresponding author: Mrudula Ravindran

Department of Mathematics, C.M.S. College of Science & Commerce, Coimbatore, Tamil Nadu, India

Definition 6(soft preinterior) ([24])

Let (U, A, \ddagger) be a soft space over U. Then the soft preinterior of the soft set (F, A) over U is denoted by $\tilde{s}p \operatorname{int}(F, A)$ and defind as the union of all the soft preopen sets contained in (F, A).

Definition 7(soft preclosure) ([24])

Let (U, A,[‡]) be a soft space over U. Then the soft preclosure of the soft set (F, A) over U is denoted by $\tilde{s}pcl(F, A)$ and defined as the intersection of all soft preclosed sets contained in (F, A).

Theorem 1 ([24])

Let (U, A, \ddag) be a soft topological space and (G,A) and (K,A) be two soft sets over U. Then,

$$(i) (G, A) \stackrel{\simeq}{=} (K, A) \Rightarrow \tilde{s}p \operatorname{int}(G, A) \stackrel{\simeq}{=} \tilde{s}p \operatorname{int}(K, A)$$

$$(ii) (G, A) \stackrel{\simeq}{=} (K, A) \Rightarrow \tilde{s}pcl(G, A) \stackrel{\simeq}{=} \tilde{s}pcl(K, A)$$

$$(iii) \tilde{s}pcl((G, A) \widetilde{\bigcup}(K, A)) = \tilde{s}pcl(G, A) \widetilde{\bigcup} \tilde{s}pcl(K, A)$$

$$(iv) \tilde{s}p \operatorname{int}((G, A) \widetilde{\cap}(K, A)) = \tilde{s}p \operatorname{int}(G, A) \widetilde{\cap} \tilde{s}p \operatorname{int}(K, A)$$

$$(v) \tilde{s}pcl((G, A) \widetilde{\cap}(K, A)) \stackrel{\simeq}{=} \tilde{s}p \operatorname{int}(G, A) \widetilde{\cap} \tilde{s}pcl(K, A)$$

$$(vi) \tilde{s}p \operatorname{int}((G, A) \widetilde{\bigcup}(K, A)) \stackrel{\simeq}{=} \tilde{s}p \operatorname{int}(G, A) \widetilde{\bigcup} \tilde{s}p \operatorname{int}(K, A)$$

Definition 8 (soft pre-neighbourhood)

In a soft topological space (U, A, \ddagger), a soft set (F, A) is called a soft pre-neighbourhood of the soft point $e_F \in (U, A)$ if there exists a soft preopen set (H, A) such that $e_F \in (H,A)$ $\subset (F,A)$

Theorem 2

For soft sets (F, A) and (G,A) over a common universe U we have

 $\widetilde{s} p \operatorname{int}((F, A) - (G, A)) \widetilde{\subset}$ $\widetilde{s} p \operatorname{int}(F, A) - \widetilde{s} p \operatorname{int}(G, A)$

Proof

Let $e_F \in \tilde{s}p \operatorname{int}((F, A) - (G, A))$ which implies that there exists a soft pre-neighbourhood (H,A) of e_F such that (H,A)

 \cong (F,A) –(G,A) \cong (F,A). From this we get (H, A) \bigcap (G,A) = (W,A).

Hence $e_F \notin \tilde{s}p \operatorname{int}(G, A)$.

Result 1

 $\widetilde{s}p \operatorname{int}((F,A) - (G,A)) \neq \widetilde{s}p \operatorname{int}(F,A) - \widetilde{s}p \operatorname{int}(G,A)$

Example 1 [24]

Let U = {a, b}, A = {e₁, e₂}. Define $(F_1, A) = \{(e_1,), (e_2,)\}, (F_2, A) = \{(e_1,), (e_2, \{a\})\}, (F_3, A) = \{(e_1,), (e_2, \{b\})\}, (F_4, A) = \{(e_1,), (e_2, \{a, b\})\}, (F_4, A) = \{(e_1$ $(F_{5}, A) = \{(e_{1}, \{a\}), (e_{2},)\}, (F_{6}, A) = \{(e_{1}, \{a\}), (e_{2}, \{a\})\}, (F_{7}, A) = \{(e_{1}, \{a\}), (e_{2}, \{b\})\}, (F_{7}, A) = \{(e_{1}, \{a\}), (e_{2}, \{b\})\}, (F_{9}, A) = \{(e_{1}, \{b\}), (e_{2}, \})\}, (F_{10}, A) = \{(e_{1}, \{b\}), (e_{2}, \{a\})\}, (F_{11}, A) = \{(e_{1}, \{b\}), (e_{2}, \{b\})\}, (F_{12}, A) = \{(e_{1}, \{b\}), (e_{2}, \{a\})\}, (F_{13}, A) = \{(e_{1}, \{a, b\}), (e_{2}, \{b\})\}, (F_{14}, A) = \{(e_{1}, \{a, b\}), (e_{2}, \{a\})\}, (F_{15}, A) = \{(e_{1}, \{a, b\}), (e_{2}, \{b\})\}, (F_{16}, A) = \{(e_{1}, \{a, b\}), (e_{2}, \{a, b\})\}, (e_{2}, \{a, b\})$

Are all soft sets on universal set U under the parameter set A. = { $(F_1, A), (F_5, A), (F_7, A), (F_8, A), (F_{16}, A)$ } is a soft topology over U.

Soft preopen sets are (F_1, A) , (F_5, A) , (F_6, A) , (F_7, A) , (F_8, A) , (F_{13}, A) , (F_{14}, A) , (F_{15}, A) , (F_{16}, A) Let $(F,A) = (F_8, A) = \{(e_1, \{a\}), (e_2, \{a, b\})\}$ and $(G,A) = (F_7, A) = \{(e_1, \{a\}), (e_2, \{b\})\}\}$. (F,A) and (G,A) are soft preopen sets. $(F,A) - (G,A) = \{(e_1, W), (e_2, \{a\})\}\}$ $\tilde{s}p$ int $((F, A) - (G, A)) = \{(e_1, \{a\}), (e_2, \{a, b\})\} - \{(e_1, \{a\}), (e_2\{b\})\}\}$ $= \{(e_1, W), (e_2, \{a\})\}$ $\tilde{s}p$ int $((F, A) - (G, A)) \neq \tilde{s}p$ int $(F, A) - \tilde{s}p$ int(G, A)

Theorem 3

For soft sets (F,A) and (G,B) we have $\tilde{s} cl((F,A) \times (G,B)) = \tilde{s} cl(F,A) \times \tilde{s} cl(G,B)$ $\tilde{s} in t((F,A) \times (G,B)) = \tilde{s} in t(F,A) \times \tilde{s} in t(G,B)$

Proof

Let $H(a,b) \in \widetilde{S} \operatorname{cl}((F,A) \times (G,B))$.We will show that $F(a) \in \widetilde{S} \operatorname{cl}((F,A) \text{ and } G(b) \in \widetilde{S} \operatorname{cl}(G,B)$

Let F(a) $\ \widetilde{\in}\ (J,A)$ be soft closed in (U,A,‡). Since H(a,b) $\ \widetilde{\in}\ (J,A)x(U,B)$ which is soft closed

$$(\mathbb{W}, A \times B) \neq ((J, A) \times (U, B)) \bigcap^{(-)} (F, A) \times (G, B))$$
$$= ((J, A) \bigcap^{(-)} (F, A)) \times ((U, B) \bigcap^{(-)} (G, B))$$
$$= ((J, A) \bigcap^{(-)} (F, A)) \times (G, B)$$

This implies that (J,A) \bigcap (F,A) \neq (W,A) and F(a) $\in \widetilde{s}$ cl((F,A). Similarly we can show that G(b) $\in \widetilde{s}$ cl(G,B).

Hence
$$\widetilde{s} cl((F, A) \times (G, B)) \subset \widetilde{s} cl(F, A) \times \widetilde{s} cl(G, B)$$

Let $H(a,b) \in \widetilde{s} \operatorname{cl}((F,A) \times (G,B))$. That is $F(a) \in \widetilde{s} \operatorname{cl}((F,A)$ and $G(b) \in \widetilde{s} \operatorname{cl}(G,B)$

If possible assume that $H(a,b) \notin \widetilde{s} cl((F,A) \times (G,B))$. Then there exists a soft open set

$$(U, K_1 \times K_2) \text{ containing } H(a,b) \text{ and } (U, K_1 \times K_2) \bigcap (H,A \times B)$$

= (W, (K_1 \times K_2) \bigcap (A \times B))
ie (U \bigcap H, (K_1 \times K_2) \bigcap (A \times B)) = (W, (K_1 \times K_2) \bigcap (A \times B))
ie (U, (K_1 \bigcap A) × (K_2 \bigcap B)) = (W, (K_1 \bigcap A) × (K_2 \bigcap B))
 \Rightarrow either (U, (K_1 \bigcap A)) = (W, (K_1 \bigcap A) \text{ or } (U, (K_2 \bigcap B)) = (W, (K_2 \bigcap B))

By the above theorem (U, K₁) is soft open and (U, K₂) is soft open. So either F(a) $\notin \widetilde{s}$ cl(F,A) or G(b) $\notin \widetilde{s}$ cl(G,B) which is a contradiction to the hypothesis. Hence H (a,b) $\notin \widetilde{s}$ cl((F,A)×(G,B)).Therefore

 $\widetilde{s}cl(F,A) \times \widetilde{s}cl(G,B) \subset \widetilde{s}cl((F,A) \times (G,B))$ By similar arguments we can

By similar arguments we can show $\operatorname{\widetilde{sin}} t((F,A) \times (G,B)) = \operatorname{\widetilde{sin}} t(F,A) \times \operatorname{\widetilde{sin}} t(G,B)$

Theorem 4

(F,A) and (G,A) are soft preopen subsets of soft topological space (U,A, \ddagger) and (U,B, \ddagger) respectively iff (F,A) × (G,A) = (H,A×B) where H(a,b) = F(a) × G(b) is soft preopen in (U,A×B, \ddagger).

Proof

(F,A) is soft preopen in (U,A,[‡]) then (F,A) $\cong \tilde{s} \text{ in } t(\tilde{s} cl(F, A))$ and (G,B) is soft preopen in (U,B,[‡]) then (G,B) $\cong \tilde{s} \text{ in } t(\tilde{s} cl(G, B))$ $\tilde{s} \text{ in } t(\tilde{s} cl(F, A) \times (G, B)) = \tilde{s} \text{ in } t(\tilde{s} cl(F, A) \times \tilde{s} cl(G, B))$ $= \tilde{s} \text{ in } t(\tilde{s} cl(F, A)) \times \tilde{s} \text{ in } t(\tilde{s} cl(G, B))$ $\cong (F, A) \times (G, B)$ Hence (F,A)×(G,B) is soft preopen in (U,A×B,[‡])

Conversely, if (F,A)×(G,B) is soft preopen in (U,A×B,‡) then (F,A)×(G,B) \subseteq \tilde{s} in $t(\tilde{s} cl(F, A) \times (G, B))$ = \tilde{s} in $t(\tilde{s} cl(F, A) \times \tilde{s} cl(G, B))$ = \tilde{s} in $t(\tilde{s} cl(F, A)) \times \tilde{s}$ in $t(\tilde{s} cl(G, B))$ Then (F,A) \subseteq \tilde{s} in $t(\tilde{s} cl(F, A))$ and (G,B) \subseteq \tilde{s} in $t(\tilde{s} cl(G, B))$ (F,A) and (G,B) are soft preopen

Theorem 5

For soft sets (F,A) and (G,B) we have $\tilde{s} pcl((F, A) \times (G, B)) = \tilde{s} pcl(F, A) \times \tilde{s} pcl(G, B)$ and $\tilde{s} p \operatorname{int}((F, A) \times (G, B)) = \tilde{s} p \operatorname{int}(F, A) \times \tilde{s} p \operatorname{int}(G, B)$

Proof

Let H(a,b) $\in \widetilde{s}$ pcl((F,A)×(G,B)) .We will show that F(a) $\in \widetilde{s}$ pcl((F,A) and G(b) $\in \widetilde{s}$ pcl(G,B)

Let F(a) $\widetilde{\in}~(J,A)$ be soft preopen in (U,A,‡). Since H(a,b) $\widetilde{\in}~(J,A)x(U,B)$ which is soft preopen

$$(\mathbb{W}, A \times B) \neq ((J, A) \times (U, B)) \bigcap ((F, A) \times (G, B))$$
$$= ((J, A) \bigcap (F, A)) \times ((U, B) \bigcap (G, B))$$
$$= ((J, A) \bigcap (F, A)) \times (G, B)$$

This implies that $(J,A) \cap (F,A) \neq (W,A)$ and $F(a) \in \widetilde{s}$ pcl((F,A). Similarly we can show that $G(b) \in \widetilde{s}$ pcl(G,B). Hence

$$\widetilde{s}pcl((F, A) \times (G, B)) \subset \widetilde{s}pcl(F, A) \times \widetilde{s}pcl(G, B)$$

Let $H(a,b) \in \widetilde{s} pcl((F,A) \times (G,B))$. That is $F(a) \in \widetilde{s} pcl((F,A)$
and $G(b) \in \widetilde{s} pcl(G,B)$

If possible assume that $H(a,b) \notin \widetilde{s} pcl((F,A) \times (G,B))$. Then there exists a soft preopen set

 $\begin{array}{l} (\mathrm{U}, \mathrm{K}_{1} \times \mathrm{K}_{2}) \text{ containing } \mathrm{H}(\mathrm{a},\mathrm{b}) \text{ and } (\mathrm{U}, \mathrm{K}_{1} \times \mathrm{K}_{2}) \bigcap^{\sim} (\mathrm{H}, \mathrm{A} \times \mathrm{B}) \\ = (\mathrm{W}, (\mathrm{K}_{1} \times \mathrm{K}_{2}) \bigcap^{\sim} (\mathrm{A} \times \mathrm{B})) \\ \mathrm{ie} (\mathrm{U} \bigcap^{\sim} \mathrm{H}, (\mathrm{K}_{1} \times \mathrm{K}_{2}) \bigcap^{\sim} (\mathrm{A} \times \mathrm{B})) = (\mathrm{W}, (\mathrm{K}_{1} \times \mathrm{K}_{2}) \bigcap^{\sim} (\mathrm{A} \times \mathrm{B})) \\ \mathrm{ie} (\mathrm{U}, (\mathrm{K}_{1} \bigcap^{\sim} \mathrm{A}) \times (\mathrm{K}_{2} \bigcap^{\sim} \mathrm{B})) = (\mathrm{W}, (\mathrm{K}_{1} \bigcap^{\sim} \mathrm{A}) \times (\mathrm{K}_{2} \bigcap^{\sim} \mathrm{B})) \\ \Longrightarrow \\ \text{either } (\mathrm{U}, (\mathrm{K}_{1} \bigcap^{\sim} \mathrm{A})) = (\mathrm{W}, (\mathrm{K}_{1} \bigcap^{\sim} \mathrm{A}) \text{ or } (\mathrm{U}, (\mathrm{K}_{2} \bigcap^{\sim} \mathrm{B})) = \\ (\mathrm{W}, (\mathrm{K}_{2} \bigcap^{\sim} \mathrm{B})) \end{array}$

By the above theorem (U, K $_{\rm 1})$ is soft preopen and (U, K $_{\rm 2}$) is soft preopen. So either

 $F(a) \notin \widetilde{s} pcl(F,A)$ or $G(b) \notin \widetilde{s} pcl(G,B)$ which is a contradiction to the hypothesis. Hence

$$\begin{aligned} & H(a,b) \not\in \widetilde{s} \ pcl((F,A) \times (G,B)) & . \text{Therefore} \\ & \widetilde{s} \ pcl(F,A) \times \widetilde{s} \ pcl(G,B) \subset \widetilde{s} \ pcl((F,A) \times (G,B)) \\ & \text{By similar arguments we can show} \\ & \widetilde{s} \ p \ int((F,A) \times (G,B)) = \widetilde{s} \ p \ int(F,A) \times \widetilde{s} \ p \ int(G,B) \end{aligned}$$

Soft pre-limitpoint

Definition 9

Let (U,A,\ddagger) be a soft topological space. A soft element F $_{e_1}^x \in V$ is said to be a soft pre-limitpoint of a soft set (F,A) over U if every soft preopen set containing $F_{e_1}^x$ contains atleast one soft element of (F,A) other than $F_{e_1}^x$.

Remark 1

The point $F_{e_1}^x$ is said to be a soft prelimit point of (F,A) iff for each soft preopen set (H,A) containing $F_{e_1}^x$,

$$(\mathbf{H}, \mathbf{A}) \bigcap^{\sim} ((\mathbf{F}, \mathbf{A}) - \mathbf{F}_{e}^{x}) \neq (\mathbf{W}, \mathbf{A}).$$

Definition 10

The set of all soft pre-limit points of (F,A) is said to be the soft prederived set of (F,A) and is denoted by $\tilde{s}pd$ (F,A). Also,

iff

(F,A)
$$\widetilde{\bigcup} \widetilde{s} pd(F,A)$$
 is soft preclosed
 $\widetilde{s} pcl(F,A) = (F,A) \widetilde{\bigcup} \widetilde{s} pd(F,A)$

Theorem 6

Let {(F,A)_r: $\Gamma \in I$ } be any family of soft subsets of (U,A,[‡]). If $\bigcup_{r \in I} \widetilde{spcl}(F,A)_r$ is soft preclosed then $\bigcup_{r \in I} \widetilde{spcl}(F,A)_r = \widetilde{spcl}(\bigcup_{r \in I} (F,A)_r)$

Proof

As $(F,A)_{r} \cong \bigcup_{r \in I} (F,A)_{r}$ Therefore $\widetilde{spcl}(F,A)_{r} \cong \widetilde{spcl} \bigcup_{r \in I} (F,A)_{r}$ We will show that $\widetilde{spcl}(\bigcup_{r \in I} (F,A)_{r}) \cong \bigcup_{r \in I} \widetilde{spcl}(F,A)_{r}$ Let $e_{F} \cong \widetilde{spcl} \bigcup_{r \in i} (F,A)_{r}$ Now if possible let $e_{F} \notin \bigcup_{r \in I} \widetilde{spcl}(F,A)_{r}$. We have $\bigcup_{r \in I} \widetilde{spcl}(F,A)_{r}$ is soft preclosed. Therefore it contains all its soft pre-limit points and e_{F} is not a soft pre-limit point of $\bigcup_{r \in I} \widetilde{spcl}(F,A)_{r}$ and therefore there exists a soft preneighbourhood (H, A) of e_{F} such that (H,A) $\bigcap_{r \in I} \widetilde{spcl}(F,A)_{r} = (W,A)$.

This implies that (H,A) $\bigcap_{\Gamma \in I} \widetilde{s} pcl(F,A)_{\Gamma} = (W,A)$ for every $\in I$.

Therefore (H, A) \bigcap^{\sim} (F, A)_r = (W, A) for every \in I, a contradiction to $e_F \in \widetilde{s}pcl \bigcup_{r \in i} (F, A)_r$.

Therefore $\widetilde{s}pcl(\bigcup_{r\in I}(F,A)_r) \cong \bigcup_{r\in I} \widetilde{s}pcl(F,A)_r$ and hence the result.

Soft Pre-Frontier

Definition 11

The set $\tilde{s}pcl(F,A) - \tilde{s}pint(F,A)$ is said to be the soft prefrontier of (F,A) and is denoted by $\tilde{s}pfr(F,A)$

Theorem 7

$$\widetilde{s}pfr(F,A) = \widetilde{s}pcl(F,A) \cap \widetilde{s}pcl((U,A) - (F,A))$$

Proof

$$\widetilde{s}pfr(F,A) = \widetilde{s}pcl(F,A) - \widetilde{s}p \operatorname{int}(F,A)$$

If $\operatorname{e}_{F} \widetilde{e} \widetilde{s}pfr(F,A) \implies \operatorname{e}_{F} \widetilde{e} \widetilde{s}pcl(F,A)$ and $\operatorname{e}_{F} \notin \widetilde{s}p \operatorname{int}(F,A)$

ie
$$e_F \in \widetilde{s}pcl(F, A)$$
 and $e_F \in \widetilde{s}pcl((U, A) - (F, A))$
Therefore $\widetilde{s}pcl(F, A) \cap \widetilde{s}pcl((U, A) - (F, A))$

Theorem 8

In general for any soft set (F,A) of (U,A,) we have $\tilde{s}pfr(\tilde{s}pfr(F,A)) \subset \tilde{s}pfr(F,A)$

Proof

 $\tilde{s}_{pfr}(\tilde{s}_{pfr}(F,A)) = \tilde{s}_{pcl}(\tilde{s}_{pfr}(F,A)) \cap \tilde{s}_{pcl}((U,A) - \tilde{s}_{pfr}(F,A)) \subset \tilde{s}_{pcl}(\tilde{s}_{pfr}(F,A)) = \tilde{s}_{pfr}(F,A)$ As $\tilde{s}_{pfr}(F,A)$ is soft preclosed.

Theorem 9

For a soft set (F,A) of (U,A,[‡]) we have

$$\widetilde{s}pfr(\widetilde{s}pint(F,A)) \cong \widetilde{s}pfr(F,A)$$
 and
 $\widetilde{s}pfr(\widetilde{s}pcl(F,A)) \cong \widetilde{s}pfr(F,A)$

Proof

$$\begin{split} &\tilde{s}pfr(\tilde{s}pint(F,A)) = \tilde{s}pcl(\tilde{s}pint(F,A)) - \tilde{s}pint(\tilde{s}pint(F,A)) \\ &= \tilde{s}pcl(\tilde{s}pint(F,A)) - (\tilde{s}pint(F,A)) \\ &= \tilde{s}pfr(F,A) \\ &\tilde{s}pfr(\tilde{s}pcl(F,A)) = \tilde{s}pcl(\tilde{s}pcl(F,A)) - \tilde{s}pint(\tilde{s}pcl(F,A)) \\ &= \tilde{s}pcl((F,A)) - \tilde{s}pint(\tilde{s}pcl(F,A)) \\ &\subset \tilde{s}pcl(F,A) - \tilde{s}pint(F,A) = \tilde{s}pfr(F,A) \end{split}$$

Theorem 10

A soft set (F,A) of (U,A,‡) is soft preopen iff $\tilde{s}pfr(F,A) = \tilde{s}pd$ (F,A).

Proof

Let (F,A) be soft preopen. Then $\tilde{s}pint(F,A) = (F,A)$ Now $\widetilde{s}pfr(F,A) = \widetilde{s}pcl(F,A) - \widetilde{s}pint(F,A) = \widetilde{s}pcl(F,A) - (F,A)$ As $\tilde{s}pcl(F,A) = (F,A) \bigcup \tilde{s}pd(F,A)$ So $\widetilde{s}pfr(F,A) = \widetilde{s}pcl(F,A) - (F,A)$ $= ((F, A) \widetilde{\bigcup} \widetilde{s} pd (F, A)) - (F, A)$ $= \widetilde{s} p d$ (F,A). Conversely, let $\tilde{s} pfr(F, A) = \tilde{s} pd$ (F,A). That is $\widetilde{s}pd(F,A) = \widetilde{s}pcl(F,A) - \widetilde{s}pint(F,A)$ $= ((F, A) \widetilde{\bigcup} \widetilde{s} p d (F, A)) - \widetilde{s} p \text{ int}(F, A)$ Hence (F,A)- $\tilde{s} p$ int(F, A) = (W,A) Therefore $(F,A) \subset \tilde{s} p \text{ int}(F,A)$ but $\tilde{s} p \text{ int}(F, A) \subset (F, A)$ and hence $(F, A) = \tilde{s} p \text{ int}(F, A)$ which shows that (F,A) is preopen.

Soft Pre-Exterior of A Soft Set

Definition 12

Let (U, A, \ddagger) be a softspace over U and (F,A) be a soft set on U.An e_x \in (U,A) is said to be a soft pre-exterior point of (F,A)

if e_x is a preinterior point of (F,A)^c. That is there exists a soft open set (G,A) such that An $e_x \in (G,A) \subseteq (F,A)^c$. The soft pre-exterior of (F,A) is denoted by $\tilde{s}pExt(F,A)$. Thus $\tilde{s}pExt(F,A) = \tilde{s}pint((U,A) - (F,A)) = \tilde{s}pint(F,A)^c$.

Theorem 11

If (U, A, \ddagger) be a softspace over U and (F, A) and (G, A) be two softsets then the following properties hold for the soft preexterior (spExt) operator but the converses are not true in general.

(i) (F,A) $\widetilde{\subset}$ (G,A) then $\widetilde{s}pExt(G,A) \widetilde{\subset} \widetilde{s}pExt(F,A)$

(ii) $\widetilde{s} pExt((F,A) \widetilde{\bigcup} (G,A)) \subset \widetilde{s} pExt(F,A) \widetilde{\bigcup} \widetilde{s} pExt(G,A)$

(iii) $\widetilde{s} pExt((F,A) \cap (G,A)) \subset \widetilde{s} pExt(F,A) \cap \widetilde{s} pExt(G,A)$

Proof

(i)If $(F,A) \cong (G,A)$ then $(G,A)^c \cong (F,A)^c$ and hence $\tilde{s}p \operatorname{int}(G,A)^c \cong \tilde{s}p \operatorname{int}(F,A)^c$ This implies that $\tilde{s}pExt(G,A) \cong \tilde{s}pExt(F,A)$ (ii)Since $(F,A) \cong (F,A) \bigcup (G,A)$ and $(G,A) \cong (F,A) \bigcup (G,A)$ So by (i) $\tilde{s}pExt((F,A) \bigcup (G,A)) \cong \tilde{s}pExt(F,A)$ and $\tilde{s}pExt((F,A) \bigcup (G,A)) \cong \tilde{s}pExt(G,A)$ Therefore $\tilde{s}pExt((F,A) \bigcup (G,A)) \cong \tilde{s}pExt(F,A) \bigcup \tilde{s}pExt(G,A)$ (iii)Since $(F,A) \bigcap (G,A) \cong (F,A)$ and $(F,A) \bigcap (G,A) \cong (G,A)$ By (i) $\tilde{s}pExt(F,A) \cong \tilde{s}pExt((F,A) \bigcap (G,A))$ and

By (i) $\tilde{s}pExt(F,A) \subset \tilde{s}pExt((F,A) \cap (G,A))$ and $\tilde{s}pExt(G,A) \subset \tilde{s}pExt((F,A) \cap (G,A))$

Hence

$$\widetilde{s}pExt((F,A)\widetilde{\cap}(G,A)) \widetilde{\subset} \widetilde{s}pExt(F,A)\widetilde{\cap} \widetilde{s}pExt(G,A)$$

The following example illustrates the above theorem

Example 2

From example 1, let U ={a,b} and A = {e₁, e_2 } (F,A) = (F_7 , A) ={(e_1 , {a}),(e_2 , {b})} and (G,A) =(F_{15} , A) ={(e_1 , {a,b}),(e_2 , {b})} are two soft preopen sets.

Clearly, $(F,A) \cong (G,A)$ $\tilde{s}pExt(F,A) = \{(e_1,\{b\}), (e_2,\{a\})\}$ $\tilde{s}pExt(G,A) = \{(e_1,W), (e_2,\{a\})\}$ So $\tilde{s}pExt(G,A) \cong \tilde{s}pExt(F,A)$ Converse need not be true. $\tilde{s}pExt((F,A) \bigcup (G,A)) = \tilde{s}pExt \{(e_1,\{a,b\}), (e_2,\{b\})\}$ $= \{(e_1,W), (e_2,\{a\})\}$ $\tilde{s}pExt((F,A) \bigcup (G,A)) = \{(e_1,\{b\}), (e_2,\{a\})\}$ $\tilde{s}pExt((F,A) \bigcup (G,A)) \cong \tilde{s}pExt(F,A) \bigcup \tilde{s}pExt(G,A)$ $\tilde{s}pExt((F,A) \bigcap (G,A)) = \tilde{s}pExt \{(e_1,W), (e_2,\{a\})\}$

$$= \{(e_1, \{b\}), (e_2, \{a\})\}$$

$$\tilde{s}pExt(F, A) \cap \tilde{s}pExt(G, A) = \{(e_1, \mathbb{W}), (e_2, \{a\})\}$$

$$\tilde{s}pExt((F, A) \cap (G, A)) \subset \tilde{s}pExt(F, A) \cap \tilde{s}pExt(G, A)$$

Theorem 12

For soft sets (F, A) and (G,A) of a soft topological space (U,A, \ddag) the following properties hold for the soft pre-exterior operator

- (i) $\tilde{s}Ext(F,A) \subset \tilde{s}pExt(F,A)$
- (ii) $\tilde{s}pExt(U, A) = (W, A)$ and $\tilde{s}pExt(W, A) = (U, A)$
- (iii) $\tilde{s} pExt(F, A)$ is soft preopen
- (iv) $\tilde{s} pExt(F, A) = (U, A) \tilde{s} pcl(F, A)$
- (v) $\tilde{s}pExt(\tilde{s}pExt(F,A)) = \tilde{s}pint(\tilde{s}pcl(F,A))$
- (vi) $\tilde{s}pExt((F,A)\widetilde{\bigcup}(G,A)) = \tilde{s}pExt(F,A)\widetilde{\cap}\tilde{s}pExt(G,A)$
- (vii) $\tilde{s}pExt(F, A) = \tilde{s}pExt((U, A) \tilde{s}pExt(F, A))$
- (viii) $\tilde{s}pint(F, A) \subset \tilde{s}pExt(\tilde{s}pExt(F, A))$
- (ix) (F,A) $\bigcap \widetilde{s} pExt(F,A) = (W,A)$
- (x) $\tilde{s}p \operatorname{int}(F, A), \tilde{s}p Ext(F, A)$ and $\tilde{s}pfr(F, A)$ are mutually disjoint

(xi) (U,A)=
$$\widetilde{s}p$$
 int(F,A) $\bigcup \widetilde{s}pExt(F,A) \bigcup \widetilde{s}pfr(F,A)$

Proof

 $(i)e_x \in \widetilde{sEx}(F,A) \Longrightarrow e_x \in \widetilde{sint}((U,A)-(F,A)) \subset \widetilde{spin}((U,A)-(F,A)) = \widetilde{spEx}(F,A)$ $(ii)\widetilde{s} pExt(U, A) = \widetilde{s} p int((U, A) - (U, A))$ $= \tilde{s} p \operatorname{int}(W, A)$ = (W, A) $\tilde{s} pExt(W, A) = \tilde{s} p int((U, A) - (W, A))$ $= \widetilde{s} p \operatorname{int}(U, A)$ = (U,A) $(iii)\widetilde{s} pExt(F, A) = \widetilde{s} p \operatorname{int}((U, A) - (F, A))$ Therefore $\tilde{s} pExt(F, A)$ is soft preopen $(iv)\widetilde{s}pExt(F,A) = \widetilde{s}pint((U,A) - (F,A)) = (U,A) - \widetilde{s}pcl(F,A)$ $(v)\widetilde{s} pExt(\widetilde{s} pExt(F, A)) = \widetilde{s} p \operatorname{int}((U, A) - \widetilde{s} pcl(F, A))$ $= \widetilde{s} p \operatorname{int}((U, A) - ((U, A) - \widetilde{s} pcl (F, A)))$ $= \tilde{s} p \operatorname{int}(\tilde{s} pcl(F, A))$ $(vi)\widetilde{s}pExt(F,A) \cap \widetilde{s}pExt(G,A) = \widetilde{s}pint((U,A) - (F,A)) \cap \widetilde{s}pint((U,A) - (G,A))$ $\widetilde{\subset} \widetilde{s} p \operatorname{int}(((U, A) - (F, A) \widetilde{\cap} ((U, A) - (G, A))))$ $= \widetilde{s} p \operatorname{int}((U, A) - ((F, A) \widetilde{\bigcup} (G, A)))$ $= \tilde{s} pExt ((F, A) \widetilde{\bigcup} (G, A))$ $\widetilde{\subset}$ (F,A) $\widetilde{\bigcup}$ (G,A) Since (F,A)so $\tilde{s} pExt ((F, A) \widetilde{\bigcup} (G, A)) \widetilde{\subset} \tilde{s} pExt (F, A)$ $\tilde{s} pExt ((F, A) \widetilde{\bigcup} (G, A)) \widetilde{\subset} \tilde{s} pExt (G, A)$ $\widetilde{s} pExt ((F, A) \widetilde{\bigcup} (G, A)) \widetilde{\subset} \widetilde{s} pExt (F, A) \widetilde{\cap} \widetilde{s} pExt (G, A)$

 $\widetilde{s} pExt((F,A) \widetilde{\bigcup} (G,A)) = \widetilde{s} pExt(F,A) \widetilde{\cap} \widetilde{s} pExt(G,A)$

 $(vi)\widetilde{s}pExt(U,A) - \widetilde{s}pint(F,A)) = \widetilde{s}pint(U,A) - ((U,A) - \widetilde{s}pint(F,A)))$ $= \widetilde{s}pint(\widetilde{s}pExt(F,A))$

 $= \tilde{s}p \operatorname{int}(\tilde{s}p \operatorname{int}((U,A) - (F,A)))$

$$= \widetilde{s} p \operatorname{int}((U, A) - (F, A))$$

 $= \tilde{s} p Ext(F, A)$

(viii) $\tilde{s}pExt(F, A) = \tilde{s}p \operatorname{int}((U, A) - (F, A)) \subset (U, A) - (F, A)$ We have $\tilde{s}pExt((U, A) - (F, A)) \subset \tilde{s}pExt(\tilde{s}pExt(F, A))$ This implies that $\tilde{s}p \operatorname{int}(F, A) \subset \tilde{s}pExt(\tilde{s}pExt(F, A))$

 $(ix)\widetilde{s}pExt(F,A) = \widetilde{s}pint((U,A) - (F,A)) \subset (U,A) - (F,A)$

This implies that $(F, A) \cap \widetilde{s} pExt(F, A) = (W, A)$

 $(x)\widetilde{s}pExt(F,A) = \widetilde{s}pint((U,A) - (F,A)) \widetilde{\subset} (U,A) - (F,A)$ and

 $\widetilde{spint}(F,A) \cong (F,A) \Longrightarrow \widetilde{spExt}(F,A) \cap \widetilde{spint}(F,A) = (W,A)$ $(xi)\widetilde{spExt}(F,A) = (U,A) - \widetilde{spcl}(F,A)$

$$= (U, A) - (\tilde{s}p \operatorname{int}(F, A) \widetilde{\bigcup} \tilde{s}pfr(F, A))$$

$$\Rightarrow (U, A) = \tilde{s}p \operatorname{int}(F, A) \widetilde{\bigcup} \tilde{s}pExt(F, A) \widetilde{\bigcup} \tilde{s}pfr(F, A)$$

CONCLUSION

In this paper soft pre-frontier and soft pre-exterior are defined. Soft pre-limit point and soft pre-neighbourhood are established. Some results concerning these are also characterized in this paper.The results concerning preinterior,pre-frontier and pre-exterior in general topology are true in soft topology also

References

- 1. Andrijevic, D: On the topology generated by preopen sets, Mat. Vesnik 39,367-376 (1987).
- Andrijevic, D and Ganster M: A note on the topology generated by preopensets, Mat. Vesnik, 39, 115-119 (1987).
- Arokiarani, L and Arokia Lancy, A: Generalized soft gS closed sets and soft gsS Closed sets in soft topological spaces, Int. J of Math. Archive 4(2), 17-23(2013).
- Banu Pazzar Varol, Alexander Shostak and Halis Aygiin: A New Approach to Soft Topology, Hacettepe J. of Math. and Stat., 41 (5), 731-741 (2012).
- Dimitrije Andrijevic: A Note on Preopen Sets, Suppl. Rend. Circ. Mat.Palermo, 2 (18), 195-201 (1988).
- [7] Fu Li: Notes on the soft operations, ARPN J. of Systems and Software, 1 (6),205-208 (2011).
- 7. Hazara, H Majundar, P and Samanta, S.K.: Soft

- Topology, Fuzzy Inf. Eng. 1,105-115 (2012).
- Kannan K, Soft generaralized closed sets in soft topological spaces, J of Theoretical and Appl. Inf. Tech, 37 (1), 17-21 (2012).
- 9. Mahanta, J and Das, P. K.: On soft topological space via semi-open and semiclosed soft sets, arXiv, 1-9 (2012).
- Mashhour, A.S. Abd El- Monsel, M.E. and El- Deep, S.N.: On Precontinuous and Weak Precontinuous Mappings, Proc. Math. Phys. Soc. Egypt. 53, 47-53(1982).
- 11. Mashhour, A.S Hasanein, I.A and Er Deeb, S.N.: A Note on Semi –Continuity and Pre Continuity, Int. J. of Pure Appl.Math. 13 (10), 1119-1123 (1982).
- 12. Maximillian Ganster: Preopen sets and resolvable spaces. Kyungpook Math. J.27 (2), 135-143 (1987).
- Molodtsov, D: Soft set theory first results. Comput. Math. Appl. 37, 19-316] Dimitrije an (1999).
- 14. Muhammad Shabir and Munazza Naz: On soft topological spaces, Comput.Math. Appl, 61, 1786-1799 (2011).
- 15. Naim Cagman, Serkan Karatas and Serdar Enginoglu: Soft Topology, Comp.Math. Appl., 62, 351-358 (2011).
- Nazmul, S.K and Samantha, S: Neighbourhood properties of soft topological spaces, Annals of Fuzzy Math. And Info. 1-16 (2012).
- Sabir Hussain and Bashir Ahmad: Some properties of soft topological spaces, Comp. and Math. with Appli., 62, 4058-4067 (2011).
- Shyamapada modak: Remarks on Dense set, Int. Math. Forum, 6 (44), 2153-2158 (2011).
- 19. Won Keun Min: A Note on Soft Topological Spaces, Comp. Math. Appl., 62, 3524-3528 (2011).
- 20. Xun Ge and Songlin Yang: Investigations on some operations of soft sets, World Academy of Science, Engg. and Tech. 75, 1113-1116 (2011).
- 21. Zorlutuna, I, Akdag, M, Min, W. K., and Atmaca, S: Remarks on soft topological spaces, Annals of Fuzzy Math. And Info. 3(2), 171-185 (2012drijevic: Semipreopen Sets Mat. Vesnik 38, 24-32 (1986).
- 22. G.B.Navalagi, preneighbourhoods, The Mathematics Education, (1998) 201-206
- 23. Gnanambal Ilango and Mrudula Ravindran:On Soft Preopen Sets in Soft Topological Space, ISSN 0976-5840 Volume 5,Number 4(2013),pp.399-409
- G.Navalagi and Debadatta roy Choudhary: Some More Results On Preopen Sets In Topology, IJMMS Vol .5 Nr.2(2009), pp.277-283.
- Sanjib Mondal and Madhumangal Pal,Soft Matrices,African journal of Mathematics and Computer science research, Vol ,4(13)pp.379-388,(2011)
