RESEARCH ARTICLE
ESTIMATION OF GLYCEMIC INDEX OF FOXTAIL MILLET

1V.Shubhashini and 2Ushadevi.C
1,2Smt VHD Central Institute of Homescience, Bangalore

ARTICLE INFO

Article History:
Received 5th, November, 2014
Received in revised form 12th, November, 2014
Accepted 8th, December, 2014
Published online 28th, December, 2014

Key words:
Type 2 Diabetes, Foxtail Millet and Glycemic Index.

INTRODUCTION

Glycemic index, or GI, measures how a carbohydrate-containing food raises blood glucose. Foods are ranked based on how they compare to a reference food– either glucose or white bread. A food with a high GI raises blood glucose more than a food with a medium or low GI.

Hence glycemic index (GI) is an important parameter of food quality which compares the hyperglycemic effect of a tested meal with pure glucose (or of another defined standard food). The GI is a measure of the food power to raise B-glucose concentration after a meal. The GI is defined as relation of the incremental area under the B-glucose response curve (IAUC) of a tested meal containing 50 g of digestible carbohydrates and the incremental area under the B-glucose response curve of the standard food, i.e. 50 g pure glucose (IAUCS).

Carbohydrates that breakdown quickly during digestion have a high GI because their B-glucose response is fast and high. Carbohydrates that breakdown slowly have a low GI (11, 23).

For healthy eating, particularly in persons with diabetes, obesity and insulin resistance, foods with low GI are recommended as they may help keep the euglycemia and the normal spectrum of lipoproteins (3,4,8,12,22,23) These effects result in decreased cardiovascular danger and probably also in reduced risk for colon and breast cancer.

METHODOLOGY & STUDY DESIGN

A step by step procedure to estimate the GI of tested samples: as per WHO and FAO protocol (11)

The study was approved by the institutional Bioethics Committee involved (Nutri-Explore ethics committee, Bangalore university project No: NEEC 005) and subjects were also given informed consent

Step 1
Selection of 10 healthy non-smoking, normal BMI, male volunteers aged between 29-32 years were selected (Table 1) to perform a formal experiment. The volunteers showed no family history of diabetes or any food allergies, were not on any medication and also were not on weight loss diet. Since, Estimating glycemic index can only be done in a controlled environment with a control substance and the test food sample.

Step 2
50 gm of glucose in 300ml water was given to the samples (10 volunteers)

Step 3
A single venous blood sample was taken in the fasting state and at 30 min, 1 hr, 1 hr 30 min and 2 hourly after consuming each sample was analyzed using glucometer optium exceed and strips with LOT no: 49867 to produce a graph of glucose
levels over time. The area under the resulting curve is what is measured, and it is called the incremental area under the blood glucose response curve, or IAUC.

Table 1 Characteristics of Male Volunteers participating in the study

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Participants</th>
<th>Normal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>29 ± 6</td>
<td></td>
</tr>
<tr>
<td>Wt (kg)</td>
<td>65 ± 6.2</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>1.71 ± 0.08</td>
<td><25</td>
</tr>
<tr>
<td>Systolic Blood Pressure (mm Hg)</td>
<td>119 ± 7</td>
<td><130</td>
</tr>
<tr>
<td>Diastolic Blood Pressure (mm Hg)</td>
<td>73 ± 8</td>
<td><85</td>
</tr>
<tr>
<td>Fasting Blood Sugar</td>
<td>87 ± 9</td>
<td>70-120mg/dl</td>
</tr>
</tbody>
</table>

Step 4

The test food was given to the volunteers after they have been in fasting mode for at least 10-12 hours was administered; the test was performed in the morning along with a drink of water which was often given with the test meal.

Step 5

The blood plasma glucose level for the next two hours was charted the same way as charted for 50 gm glucose. The IAUC was also calculated the same way, as the area under the resulting curve.

Step 6

By dividing the IAUC of the test food by the IAUC of the control food and multiplying it by 100. The GI of the test food for each test subject was calculated.

Step 7

Add the results for each test subject together and divide the sum by 10 (Mean is then calculated)

Calculations of individual GI values in every volunteer

The incremental area under the curve (IAUC) was calculated for each meal in every volunteer separately (as the sum of the surface of triangles and trapezoids between the B-glucose curve and horizontal baseline going parallel to x-axis from the beginning of B-glucose curve at time 0 to the point at time 120 min) to reflect the total rise in B-glucose concentration after eating the tested food.

The IAUCS for the standard reference food (i.e., 50 g of pure glucose) was obtained, in the IAUC/IAUCS calculations, all B-glucose values in the course of the test lower than the first value (at time 0) were equalized to the respective first value. In each volunteer, the GI (%) was calculated by dividing the IAUC for the tested food by the IAUCS for the standard food and multiplying by 100.

IAUC – Incremental Area Under the blood glucose response Curve for the tested meal
IAUCS – Incremental Area Under the blood glucose response Curve for the standard meal

Final calculation of the GI for each tested food

The GI for each tested food was calculated as the mean from the respective average GI’s of the 10 volunteers.

Statistical Analysis

A PC link was used to transfer the data from glucometer optium exceed to PC and statistical analysis were performed with SPSS V.10.1.

Tested foods

Two different foods with a known content of nutrients were tested

1. Pure glucose, one serving 50 g; Glucose was dissolved in 200 ml of water before drinking.
2. Foxtail Millet Rice Nutrient composition: carbohydrates 67.3 gm, protein 13.2 gm, fat 4.4 gm, energy 362 kcal /100g; one serving 74 gm(equal 50.0 g of carbohydrates); The food was professionally prepared in the expected quality and quantity; the portions were packed and marked with a set sign. Each serving contained 50 g of carbohydrates.

Table 2 Proximate Analysis of Foxtail Millet Rice Bath (Navanakki) /100gm

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>70.1 gm</td>
</tr>
<tr>
<td>Ash</td>
<td>1.25 gm</td>
</tr>
<tr>
<td>Crude Fibre</td>
<td>1.3 gm</td>
</tr>
<tr>
<td>Protein (NX6.25)</td>
<td>1.5 gm</td>
</tr>
<tr>
<td>Total fat</td>
<td>18.8 gm</td>
</tr>
<tr>
<td>Energy</td>
<td>117.1 kcal</td>
</tr>
</tbody>
</table>

Chemical and Nutritional Analysis

Physiochemical composition of Foxtail Millet Rice was determined using standard AOAC 18th edition methods (12) for moisture No: 986.21, Ash No: 923.09. Crude fibre No: 962.09, Protein (NX 6.25) No: 984.13, Total Fibre No: 925.06 and by difference method Carbohydrate was estimated and by calculation total energy was estimated (Table 2)

Histograms for glucose and Foxtail Millet Rice bath for different time interval
(Foxtail Millet Rice) in every volunteer on fasting overnight for atleast 10-12 hrs

Fig 2 at 30 min

Mean B-glucose curves (glucometer Optium exceed) after consumption of 50 g of glucose for breakfast and test sample (Foxtail Millet Rice) in every volunteer after 30min which is significant (p<0.05)

![Fig 2 at 30 min](image)

Mean B-glucose curves (glucometer Optium exceed) after consumption of 50 g of glucose for breakfast and test sample (Foxtail Millet Rice) in every volunteer after 60min which is significant (p<0.05)

![Fig 3 at 60 min](image)

Mean B-glucose curves (glucometer Optium exceed) after consumption of 50 g of glucose for breakfast and test sample (Foxtail Millet Rice) in every volunteer after 90min which is significant (p<0.05)

![Fig 4 at 90 min](image)

Mean B-glucose curves (glucometer Optium exceed) after consumption of 50 g of glucose for breakfast and test sample (Foxtail Millet Rice) in every volunteer after 120min which is significant (p<0.05)

![Fig 5 at 120 min](image)

(Foxtail Millet Rice) in every volunteer after 120min which is significant (p<0.05)

![Fig 6 B glucose curve of glucose and test sample (Foxtail Millet Rice)](image)

The intake of test food was associated with high average blood glucose at 0 min P>0.05 then later the measurements at 30, 60, 90, 120 minutes after the ingestion of test food showed a decrease in average blood glucose value which was significantly different (P<0.05) when compared to glucose consumption.

Table 3 Glycemic index GI of Foxtail Millet Rice’s and Glucose in 10 volunteers SD [%]

<table>
<thead>
<tr>
<th>Group</th>
<th>GI of Foxtail Millet Rice</th>
<th>GI of glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male volunteers</td>
<td>45.3 ± 54.4</td>
<td>96.7 ± 11.9</td>
</tr>
</tbody>
</table>

P < 0.05 of tested food vs. glucose

Foxtail Millet Rice presented a favorable glycemic response, ranking as low GI, the mean GI of Foxtail Millet Rice falls under low glycemic index foods, the value being 47.89.

RESULTS AND DISCUSSION

Recent studies from Harvard School of Public Health indicate that the risks of diseases such as type 2 diabetes and coronary heart disease are strongly related to the GI of the overall diet. In 1999, the World Health Organisation (WHO) and Food and Agriculture Organisation (FAO) recommended that people in industrialised countries base their diets on low-GI foods in order to prevent the most common diseases, such as coronary heart disease, diabetes and obesity5, 7, 9, 10, 14, 15, 17, 23.

Hence an attempt was made to estimate the glycemic index of Peral Millet Rice and the nutritional characteristics of sample food is described in table 2. Food composition among food products is very different from the raw ingredients to the cooked form. The intake of test food was associated with high average blood glucose at 0 min P>0.05 then later the measurements at 30, 60, 90, 120 minutes after the ingestion of test food showed a decrease in average blood glucose value which was significantly different (P<0.05) when compared to glucose consumption.

Food factor such as food from particle size, processing, preparation and cooking methods, type of starch structure, the presence of other nutrients may affect the GI value (19,21)

An important effect attributable to the results associated with low GI in Foxtail Millet Rice when compared to the raw ingredients quoted in the study, It is important to note that Foxtail Millet are rich in fibre which provides bulk to Gastro-Intestinal tract contents and slows transit time of matter through the tract (11)
Soluble fibre also decreases the rate of starch digestion by pancreatic amylase in vivo, probably by delaying the interaction between enzymes and substrates (19).

With regards to legumes such as peas, beans and lentils. The fibre content has been repeated between 14.65% and 24.08% (24) foods that are known for their low GI with values between 22 & 42 (13) the fibre value for Foxtail Millet corresponds to an average to 5% for cooked Foxtail Millet rice’s /100 gm (table 2) a component that has an important effect when estimating the product’s GI values.The fat content of Foxtail Millet cooked and raw in one study was approximately 5% /100gm (table 2) and it is another factor to reduce the Glycemic response (16) as it delays gastric emptying (rove et. al (20)

A similar effect could have occurred with Foxtail Millet consumption too.

CONCLUSION

According to the results, the average GI value for Foxtail Millet was found to be 47.89 classified as low GI food.

Hence the intake of Foxtail Millet can be consistent favorable to diabetics who require low GI foods in the daily diet and it is also a good choice for healthy eating habits and also could be good alternative cereal food

References

9. Crowe TC, Seligman SS. Copeland L. Inhibition of enzymic digestion of amylase by free fatty acids in vitro contributes to resistant starch formation J Nutr. 2000, 130; 2006-8
