CONSANGUINEOUS, NON-CONSANGUINEOUS, REPRODUCTIVE EVENTS, FERTILITY AND MORTALITY DIFFERENTIALS OF YERUKULA TRIBE: AN ENDOGAMOUS HUMAN POPULATION, ANDHRA PRADESH, INDIA

D.S.R.S. Prakash, and J.Balaji Chandra Mouli

Department of Biotechnology, Adikavi Nannaya University, Rajamahendravaram- 533 296, East Godavari District, Andhra Pradesh, India

DOI: http://dx.doi.org/10.24327/IJRSR.2020.1106.5406

ABSTRACT

The Yerukulas, a tribal population subsisting traditionally on agriculture, animal husbandry and handicrafts trade, inhabit largely in plains of Southern Indian states specifically, Andhra Pradesh, Tamil Nadu and Karnataka. The genetic demographic information regarding occupation, economic status, fertility and mortality, age of children etc were collected. The present genetic study on tribal population with moderately high fertility and mortality shows a picture of a growing population. Sex ratio was slightly deviated to the predominance of males. The inbreeding coefficient for autosomes is 0.0381 and sex chromosomes is 0.0438 among the Yerukula tribe, and the overall inbreeding coefficient is 0.081 which is relatively high due to more number of uncle-niece marriages. Among postnatal deaths, neonatal deaths in non-consanguineous and infantile deaths in consanguineous couples are higher than their counterparts. The index of variability of fertility is higher in non-consanguineous couples and proportion of surviving offspring is higher in consanguineous couples. However, the percent offspring mortality is higher in non-consanguineous couples. Thus, improving socio-economic conditions and creating awareness on medical facilities so as to reduce the fertility and mortality is essential to keep the population growth undercontrol.

INTRODUCTION

The population structure and genetic demography occupy an important place in biological anthropology as the perpetuation of a species has direct bearing with its reproductive success. The nature and size of the population, its relation with environment, mating structure, composition, reproductive fitness, etc. through the operation of micro evolutionary forces, have influence on genetic structure or genetic variation. The importance and application of genetic demographic studies in this direction is ever growing. And a considerable number of studies have been carried out worldwide (Bittles & Smith, 1994; Relethford & Harpending, 1994; Shami & Grant, 1994; Bulavea & Kurbatova, 1995; Relethford & Miekle, 1994; Grant & Bittles, 1997; Hussain & Bittles, 1998; Relethford & Jorde, 1999, etc).

India provides a unique opportunity to take-up such studies as Indian population is known for its unique cultural and linguistic diversity (Gunjan et al., 2012). Broadly, Indian population can be categorized as the castes, tribes and religious communities.

According to the 2001 census, India has more than 84 million tribes which constitute 8.2% of the total population. There are currently about 530 tribal groups in India. India probably has the largest number of tribal communities in the world (Topal & Samal, 2001). These communities are geographically distinct; with each tribe having its own unique customs, traditions, beliefs and practices. A considerable number of studies have been undertaken on Indian tribes (Basu, 1969, 1972; Rakshit, 1972; Saheb & Naik, 1983; Reddy & Reddy, 1984; Deep Kumar, Rao, & Reddy, 1985; Malik & Hauespie, 1986; Prakash & Malik, 1990; Kar, 1993; Kshatriya, Singh, & Basu, 1997; Chachra & Bhasin, 1998; Langstieh & Banrida, 2001; Bhasin & Nag, 2002). It is worth mentioning that some of the studies of this kind have focused on genetic implications of demographic structure (Papa Rao & Mukherjee, 1975; Reddy & Lakshmananudu, 1979; Sanghvi, 1982; Vijayakumar & Malhotra, 1983; Babu & Naidu, 1995, Babu & Kusuma, 2002, etc). From Andhra Pradesh also studies on various genetic demographic variables of both tribal and caste populations have been undertaken during the past few decades (Sanghvi, 1966; Rao & GollaReddi, 1973; Reid, 1973; Goud & Rao, 1977;

The present study has been conducted among Yerukula, a tribal population inhabiting largely in plains of Southern Indian states, specifically Andhra Pradesh, Tamil Nadu and Karnataka. They are called as ‘Yerukula’ in Andhra Pradesh after their women’s traditional profession of fortune telling (soothsaying). The Yerukulas subsist traditionally on agriculture, animal husbandry and handicrafts trade. According to 2001 Indian census, the total population of Yerukulas in Andhra Pradesh is 4,37,459 which comprises about 9% of the total tribal population of Andhra Pradesh. The literacy rate of Yerukulas in Andhra Pradesh is 45.4% (highest among the tribal population of Andhra Pradesh) (Census of India, 2001). The Yerukula tribe is divided into a number of endogamous sub-divisions and each such sub-division is named after the commodity, which they traded in and the occupation they adopted. The sub-divisions of Yerukulas are Dabba Yerukula (those who make baskets from split bamboo), Eethapullala Yerukula (date twigs-those who make baskets from wild date leaves), Kunchapuri Yerukula (those who make weaver's combs), Parikamuggula Yerukula (soothsayers), Karivepakku Yerukula (hawkers of curry leaves) and Uppu Yerukula (salt hawkers). The traditional occupation of Yerukulas includes basket-making, mat weaving, pig rearing, rope-making, etc. Most of the Yerukulas are settled in the villages/towns and trying to make their way out of the poverty by getting education, which has been denied to them since ages.

MATERIALS AND METHODS

A total of 100 Yerukula families residing in and around Narsapuram town, West Godavari district of Andhra Pradesh, India have participated in this study. These families were selected randomly from rural and urban areas. The data were collected through interviewing the eldest female member in the family by using a structured questionnaire. Before initiating the interview, the consent of the participants was obtained by explaining them the purpose of the study. The demographic information regarding occupation, economic status, fertility and mortality and age of children were collected. Also, information about the marriage type, i.e. consanguineous or non-consanguineous marriage was recorded by constructing pedigrees. Based on pedigrees, consanguineous marriages are classified as uncle-niece and first cousin marriages. First cousin marriages are further classified as marriage with father’s sister’s daughter (FSD) and mother’s brother’s daughter (MBD). Data on reproductive history of woman, which includes the outcome of each pregnancy, i.e., abortions, still births, live births and postnatal deaths and sex of all children (dead or alive) were collected.

The data was processed and analyzed by using SPSS V.19. In addition to common statistical measures, genetic demographic variables namely net reproductive rate (NRR), child – woman ratio (CWR), index of variability of fertility (IVF), proportion of surviving offspring (PSO), contribution of infertility to variance (ICV) and percent offspring mortality (POM) were calculated using the following formulae:

RESULTS

Table 1 Distribution of Consanguineous and Affinal families among Yerukula (Scheduled Tribe) is presented in the Table.

<table>
<thead>
<tr>
<th>Type of Category</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consanguineous living with husband</td>
<td>41</td>
<td>41.00</td>
</tr>
<tr>
<td>Consanguineus separated or widow</td>
<td>6</td>
<td>6.00</td>
</tr>
<tr>
<td>Affinal living with husband</td>
<td>48</td>
<td>48.00</td>
</tr>
<tr>
<td>Affinal separated or widow</td>
<td>5</td>
<td>5.00</td>
</tr>
<tr>
<td>Divorce</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.00</td>
</tr>
</tbody>
</table>

In Yerukula 100 married woman are interviewed. Out of 100 sample, 41 consanguineous and 48 affinal individuals are living with husbands. And five consanguineous and six affinal individuals are separated or widows. And there are no divorced cases recorded in this population.

Table 2 Distribution of Women by Marriage Type among Yerukula (Scheduled Tribe) is presented in the Table.

<table>
<thead>
<tr>
<th>Marriage Type</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncle niece</td>
<td>15</td>
<td>15.00</td>
</tr>
<tr>
<td>Mothers Brothers</td>
<td>20</td>
<td>20.00</td>
</tr>
<tr>
<td>Daughter</td>
<td>11</td>
<td>11.00</td>
</tr>
<tr>
<td>Father’s Sister’s</td>
<td>54</td>
<td>54.00</td>
</tr>
<tr>
<td>Daughter</td>
<td>54</td>
<td>54.00</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.00</td>
</tr>
</tbody>
</table>

In Yerukulas, the incidence of consanguineous marriages is 46% and affinal marriages is 54%. Among consanguineous marriages, 20% are Mother’s Brother’s Daughter and 15% are Uncle-Niece marriages and 11% are Father’s Sister Daughter marriages are observed.

Table 3 Inbreeding coefficients for autosomes and sex linked genes among Yerukula

<table>
<thead>
<tr>
<th>Marriage type</th>
<th>No.</th>
<th>Proportion (Cj)</th>
<th>Inbreeding coefficients (Fai) for Autosomes</th>
<th>Sex linked genes</th>
<th>Sex linked genes</th>
</tr>
</thead>
</table>
Among consanguineous marriages, marriages with patrilateral (marrying father’s sister’s daughter) are observed to be more compared to matrilateral cross cousin marriages (marrying mother’s brother’s daughter). About 15% of uncle-niece marriages are reported among this tribe. The inbreeding coefficient for autosomes is 0.0381 and sex chromosomes is 0.0438 among the Yerukula tribe, and the overall inbreeding coefficient is 0.081 which is relatively high due to more number of uncle-niece marriages.

Table 4 Details of ages at women’s reproductive events among Yerukula women

<table>
<thead>
<tr>
<th>Age at event</th>
<th>Mean (years)</th>
<th>SE (years)</th>
<th>SD (years)</th>
<th>SE (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at menarche</td>
<td>11.20 ± 0.05</td>
<td>0.52</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Age at marriage</td>
<td>14.04 ± 0.25</td>
<td>2.53</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>Age at first conception</td>
<td>16.30 ± 0.23</td>
<td>2.29</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>Age at last conception</td>
<td>23.34 ± 0.62</td>
<td>5.76</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>Age at menopause</td>
<td>42.38 ± 1.37</td>
<td>5.49</td>
<td>0.97</td>
<td></td>
</tr>
</tbody>
</table>

SD = standard deviation; SE = standard error

Table 4 shows the details of ages at menarche, marriage, first conception, last conception, and menopause among Yerukula women. The mean age at menarche among Yerukula girls is 11.99 SE 0.05 years, which is considered as a very early age at menarche. The mean age at marriage is 14.04 ± 0.25 years, revealing that Yerukula girls usually get married approximately after 2-3 years of attaining menarche. The mean age at first conception among Yerukula is 16.30 ± 0.23 years. The difference between the mean ages at marriage and the mean age at first conception reveals that Yerukula girls conceive within two years after marriage. The mean age at last conception among Yerukula is 23.40 ± 0.62 years. The mean age at menopause of Yerukula is 42.38 ± 1.37 years.

Fertility and mortality differentials

Table 5 Fertility particulars in consanguineous and non-consanguineous couples of Yerukula

<table>
<thead>
<tr>
<th>Fertility particulars</th>
<th>Consanguineous</th>
<th>Non-consanguineous</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SE</td>
</tr>
<tr>
<td>Number of married women Conceptions</td>
<td>5.00</td>
<td>2.51</td>
</tr>
<tr>
<td>Live births</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1.96</td>
<td>0.16</td>
</tr>
<tr>
<td>Female</td>
<td>1.80</td>
<td>0.14</td>
</tr>
<tr>
<td>Total</td>
<td>3.76</td>
<td>0.19</td>
</tr>
<tr>
<td>Surviving offspring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1.78</td>
<td>0.18</td>
</tr>
<tr>
<td>Female</td>
<td>1.16</td>
<td>0.15</td>
</tr>
<tr>
<td>Total</td>
<td>2.94</td>
<td>0.18</td>
</tr>
<tr>
<td>Fertility Indices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Reproductive Rate</td>
<td>1.30</td>
<td>1.11</td>
</tr>
<tr>
<td>Child – woman ratio</td>
<td>284.02</td>
<td>284.02</td>
</tr>
<tr>
<td>Index of variability of fertility</td>
<td>0.3746</td>
<td>0.8091</td>
</tr>
<tr>
<td>Proportion of surviving offspring</td>
<td>0.9055</td>
<td>0.8554</td>
</tr>
</tbody>
</table>

SE = standard error

The fertility details, in terms of number of conceptions, live births and surviving children per woman among consanguineous and non-consanguineous couples are shown in Table 5. Although non-consanguineous women have more number of conceptions, live births and surviving children than consanguineous women, the differences are not significant. The differences between number of males and females in live births and surviving children assessed through t-tests are also not significant. This table reports few fertility indices. Net reproductive rate, a proportion of number of daughters to number of mothers, is higher in consanguineous than in non-consanguineous couples. The woman-child ratio, a proportion of children in 0-5 years age to women in 15-49 years age, is 284.02. The index of variability of fertility is higher in non-consanguineous couples and proportion of surviving offspring is higher in consanguineous couples. However, the percent offspring mortality is higher in non-consanguineous couples.

Table 6 Mortality particulars in consanguineous and non-consanguineous couples of Yerukula.

<table>
<thead>
<tr>
<th>Mortality particulars</th>
<th>Consanguineous</th>
<th>Non-consanguineous</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SE</td>
</tr>
<tr>
<td>Number of married men Prenatal mortality</td>
<td>1.50</td>
<td>0.35</td>
</tr>
<tr>
<td>Abortions</td>
<td>2.00</td>
<td>0.31</td>
</tr>
<tr>
<td>Still births Total prenatal</td>
<td>1.92</td>
<td>0.27</td>
</tr>
<tr>
<td>Postnatal mortality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neonatal Infantile Juvenile</td>
<td>1.20</td>
<td>0.17</td>
</tr>
<tr>
<td>Total postnatal</td>
<td>1.80</td>
<td>0.40</td>
</tr>
<tr>
<td>Total mortality</td>
<td>1.50</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>3.42</td>
<td>0.52</td>
</tr>
</tbody>
</table>

SE = standard error, for difference in total mortality rate between consanguineous and non-consanguineous couples = 6.459; p > 0.05

Table 6 presents the details of mortality among offspring of consanguineous and non-consanguineous couples. In the present study, the mortality is categorized as prenatal and postnatal deaths. The prenatal mortality includes abortions and still births. Miscarriages could not be differentiated from abortions. The postnatal deaths are classified into neonatal, infantile and juvenile deaths, as age specified death rate were suggested to be convenient to know the size of different age groups and growth pattern of population. The mean mortality rates for prenatal are 1.92 ± 0.27 and 2.80 ± 0.41 for consanguineous and non-consanguineous women, respectively. The mean mortality rates at postnatal stage are 1.50 ± 0.25 and 2.18 ± 0.46 respectively. Among postnatal deaths, neonatal deaths in non-consanguineous and infantile deaths in consanguineous couples are higher than their counterparts. The overall mortality rate is slightly higher among non-consanguineous (4.98 ± 0.87) than consanguineous couples (3.42 ± 0.52), yielding a statistically significant difference (p<0.05).

DISCUSSION

The degree of consanguinity is relatively high among Andhra tribes. In Yerukulas, the incidence of consanguineous marriages is 46%. The prevalence of consanguineous marriages is highest (73.43%) among Valmiki tribe (Naidu & Babu, 1999) and lowest (6.30%) among Mathura tribe (Pingle, 1983). It is also in the range of other tribal populations of this region i.e. 27.49% Kotia, (Yasmin & Mascie-Taylor, 1997) to 61.84%
Konda Reddi, (Veerraju, 1978). The coefficient of inbreeding of a specific consanguineous mating is the chance that both wife and husband derived common genes that are descended from a common ancestor.

The Yerukula reports lower mean menarcheal age (11.99 years) and Jatapu record higher mean menarcheal age (15.09 years) (Rao, Blake, & Veerraju, 1978). The results revealed that Yerukula girls usually get married approximately after 2-3 years of attaining menarche. The highest mean age at marriage (18 years) was reported in Kotia (Yasmin & Mascie-Taylor, 1997) and the lowest mean was 14.04 years in Yerukula (Present Study). It is to be noted that the tribal communities get their children married at an early age than their counter-caste populations living in either villages or urban areas. This might be due to lack of awareness or due to cultural practices of tribal population. The marital distance is an important phenomenon in understanding the dispersal of genes of Mendelian populations. The genetic structure of a population is determined not only by the amount of gene flow in to a population, but also by the extent and size of the geographical area over which genes are distributed. Due to several socio-economic reason, including employment and migration.

The age of woman at first conception is an important event of her fertility performance since, the women with younger age first conception leads to higher fertility span which enables more children, if natural reproductive behavior is not altered. Majority of the castes such as Relli (Ramesh, 1992), Chakali, Kummar, Madiga, Mangali (Babu & Naidu, 1989), Vada Balija (Rajeswari, Busi, Murty, Rao, & Narahari, 1992), Koppala Velama (Sudhakar, Padma, & Babu, 1998), etc. from Andhra Pradesh reported slightly higher age at first conception i.e. around 17 years. But the present tribe recorded the lowest mean age at first conception of 16 years. The mean age of last conception in Yerukula tribe is (23.34 0.62 years), an intermediate value between Koppulavelama (20.98 0.81years) (Sudhakar, Padma, & Babu, 1998), the lowest mean age at last conception and Yadava (36.33 7.20 years) (Rajeswari, Busi, Murty, Rao, & Narahari, 1992), the highest mean age at last conception.

The present study when compared with other tribal populations, the mean fertility ranges from 2.80 live births per women (Savara, Rao, Blake, & Veerraju, 1978) to 4.36 Konda Reddi (Veerraju, 1978). Yerukula women possessed the mean fertility in the range of other tribal populations. The mean number of conceptions and live births among non-consanguineous couples show higher values than consanguineous couples. Comparing the fertility details of Yerukula tribe with that of other tribal populations of this region (Naidu & Babu, 1999), the averages of tribal populations (4.07 mean conceptions, 3.84 mean live births and 2.96 mean surviving children) are slightly higher than those of Yerukula. Bogue (1969) indicated that the net reproductive index as intergenerational reproductive index. The net reproductive index is the manifestation of the average number of surviving female children for women. If the value is one or more than one, the population is exactly replacing itself, if the value is greater than one, it indicates that the population is growing itself, and if the value is less than one, the population is not replacing itself. Long term growth indications of fertility and mortality are expressed by net reproductive index. The net reproductive index for Yerukula is 1.8493 which indicates that the tribal population is growing. Similar trend was observed even in other tribal populations of Andhra Pradesh (Babu & Kusuma, 2002; Reddy & Malhotra, 1988). However, fertility measured in terms of mean conceptions, live births, and surviving children per woman, the differences between consanguineous and non-consanguineous groups are marginal and statistically not significant.

The present study records higher mortality rates than averages of tribal populations of this region (mean prenatal, post-natal and total deaths per woman are 0.26, 0.82, and 1.08, respectively as reported by Naidu, Babu, Kusuma, & Yasmin Devi, 1995). The mortality rates are slightly higher among non-consanguineous than consanguineous couples. The mortality differences between inbred and non-inbred populations may be explained by Sanghvi’s (1966, 1982) hypothesis that the effect of inbreeding will be minimized due to the elimination of lethal and deleterious genes from the gene pool through a long history of consanguinity.

CONCLUSION

The present genetic study on tribal population with moderately high fertility and mortality shows a picture of a growing population. This tribal population records higher mortality rates than averages of tribal populations of this region (mean prenatal, post-natal and total deaths per woman are 0.26, 0.82, and 1.08, respectively The mortality rates are slightly higher among non-consanguineous than consanguineous couples. The mortality differences between inbred and non-inbred populations hypothesis that the effect of inbreeding will be minimized due to the elimination of lethal and deleterious genes from the gene pool through a long history of consanguinity. The results for mortality suggest that reproductive loss is positively associated with inbreeding in this tribe. The economically poor and illiterate Yerukulas do not adopt birth-control methods and perform early marriages. Thus, improving socio-economic conditions and creating awareness on medical facilities so as to reduce the fertility and mortality is essential to keep the population growth under control.

Acknowledgements

Author express his sincere gratitude to Prof. M. Jagannadha Rao, Vice Chancellor, Adikavi Nannaya University, Rajamahendravaram, for all his support. This study received financial assistance from the University Grants Commission (UGC), Government of India, in the form of post-doctoral fellowship.

References

R.R.Prasad, Encyclopaedic Profile of Indian tribes (pp.
Basu, A. (1972). A demographic study of the Kota of Nilgiri
Anthrop. , 31, 391-416.
Bhasin, M. K., & Nag, S. (2002). A demographic profile of
Human Ecology , 13, 1-55.
in postfamine marriage patterns, Northern Ireland, 1840-
1915. I. Demographic and kinship analysis. Hum Biol ,
66(1), 59-76.
Cavalli-Sforza, & W. E. Bodmer, The Genetics of
San Francisco: New York: John Wiley and Sons Inc.
Bulaeva, K. B., & Kurbatova, O. L. (1995). Genetic-
demographic study of mountain populations from
Dagestan and their migrants to the lowland. Comparison
of basic parameters of fitness. Genetika , 31(9), 1300-
Census of India. (2011). Retrieved from Provisional
Population Totals Paper 2 of 2011: Andhra Pradesh:
Government of India Publications.Census of India.
Retrieved from Censusindia.gov.in/Tables_Published/SC
Census of India. (2011). Retrieved from Provisional
Population Totals Paper 1, Series 1 of 2011 India:
Government of India Publications.Census of India.
(2011).
Retrieved from [http://www.census
2011.co.in/census/state/districtlist/andhra+pradesh.html]
demographic study among the caste and tribal groups of
central Himalayas: Family planning. Journal of Human
Ecology , 9, 445-450.
Char, K. S. N., Lakshmi, P., Gopalan, K. B., Gowrinath, S.
some endogamous populations of Andhra Pradesh, India.
study the Kamma, Kapu Caste groups of Andhra
methods of populations in a public health survey: the
example of the village Glanle in Ivory Coast. Coll
Antropol , 22(1), 63-75.
Goud, J. D., & Rao, P. R. (1977). Distribution of some
Genetic markers In: Yerukula Tribe of Andhra Pradesh.
J. Ind. Anthro. Socio , 12, 258-265.
marriages on fertility and infant mortality among Reddy
and Mala of Southern Andhra Pradesh. Ind. J. Phy.
Anthro and Hum. Genet , 13(1), 43-49.
Grant, & Bittles. (1997). The comparative role of
consanguinity in infant and childhood mortality in
Gunjan, S., Rakesh, T., Ruchira, C., Vipin, K. S., Anish, M.
S., Sharath, A., et al. (2012). Genetic Affinities of
the Central Indian Tribal Populations. PLoS ONE , 7(2),
e32546.
Hussain, R., & Bittles, A. H. (1998). The prevalence and
demographic characteristics of consanguineous
Kar, R. K. (1993). Health behaviour among the Tribes of
North-East India: A profile. Journal of India
Anthropological Society . 28, 157-164.
demographic features and health care practices
among the Jaunsaris of Jaunsar-Bawar, Dehradun, Uttar
Langstieh, & Banrida, T. (2001). Demographic structure of
the Khasi-Muslims of Shillong, Meghalaya. Journal of
Human ecology , 12, 121-125.
Malik, S. L., & Hauspie, R. C. (1986). Age at menarche
among high altitude Bods of Ladakh (India). Human
Biolog y , 58(4), 541-548.
Stud ies on Inbreeding and its effects in some
endogamous populations of Chittoor District, Andhra
Pradesh. Bulletin of the Anthropological Survey of India,
24, 10-22.
among the tribal population of Adilabad district. Andhra
Murty, J. S., & Rao, V. V. (1996). Effect Of Inbreeding On
Mortality And Other Traits In Socio-Economically
Divergent Castes Of Andhra Pradesh. Indian journal of
human genetics . 2 (1), 1-11.
consanguinity on fertility and mortality in
GampasaliKammas of Andhra Pradesh. In I. C. Verma,
Medical Genetics in India,Vol.2. (Ed.). Pondicherry:
Aurora Enterprises.
Naidu, J. M., & Babu, B. V. (1999). Inbreeding, fertility and
mortality among tribal populations of Andhra Pradesh.
In PK Das (ed.): J.B.S. Haldane.Birth Centenary
Memorial Volume. (in press).
Naidu, J. M., Babu, B. V., Kusuma, Y. S., & Yasmin Devi,
S. S. (1995). Inbreeding effects on reproductive outcome
among seven tribes of Andhra Pradesh, India. Am. J.
Hum Biol , 7, 589-595.
and Inbreeding effects on fertility, mortality and
morbidit y in a small population of Tirupati. Proc. II
and marriage distance patterns in five tribal groups of
Genetical study of the Five Tribal groups of Andhra
Pradesh, India. Z. Morph. Anthro , 72, 339-348.
Prakash, S. H., & Malik, S. L. (1990). Differences in
fertility in highlander and lowlander bods of Himachal
Variability of Selection opportunities with changing
Socio-Cultural environments. Human Heredity , 35,
(218-222).
Rajeswari, G. R., Busi, B. R., Murty, J. S., Rao, V. V., &
Narahari, S. (1992). Selection intensities and

38932 | Page
consanguinity in the Yadava and Vadabalija of Visakhapatnam, Andhra Pradesh, India. Biodemography and Social Biology, 39(3-4), 316-319.

How to cite this article:
