CASE REPORT

TO HIGHLIGHT THE QUALITY OF EDIBLE OYSTER, (CRASSOSTREA GRYPHOIDES) WITH RELATION TO MICROFLORA OF KELVA MARKET, PALGHAR, MAHARASHTRA

Narvankar S.S* and Singh R. B
Department of Zoology S.D.S.M. College Palghar, Maharashtra, India

DOI: http://dx.doi.org/10.24327/ijrsr.2019.1011.4215

ARTICLE INFO

ABSTRACT
This study has been undertaken to investigate the microflora of edible oyster (Crassostrea gryphoides) from Kelva market, Palghar. In the present study between 2016 to 2018, total 12 samples were collected and processed for different microbial flora. In all 64 isolates were isolated. Maximum number were observed of Aeromonas spp. (42%) followed by Pseudomonas spp. (28%), Enterobacter kobei (14%), Providencia vermicola (13%) and Shewanella algae (03%). In this paper an attempt is being made to enumerate the different microbes and their consequences on the human health if any.

INTRODUCTION
It was not until the late 19th to early 20th century that public health agencies considered controls to reduce shellfish-borne disease (US Dep. Health Hum. Servo 1993). In February 1925, the Surgeon General arranged a conference with the Bureau of Chemistry (now the United States Food and Drug Administration) and the Bureau of Commercial Fisheries (now the National Marine Fisheries Service) to establish sanitary controls for the oyster industry. At this conference the agencies resolved to control "the beds on which shellfish are grown" and "the plants in which shellfish are shucked" (US Dep. Health Hum. Servo 1993). Shellfish safety issues continue to revolve around these two categories: the quality of the waters in which shellfish are grown, and the conditions under which shellfish are harvested, processed, and distributed (R. J. Wittman and G. J. Flick., 1995). Significant strides have been made in creating a safer food, but many problems nevertheless remain (R. J. Wittman and G. J. Flick., 1995). We examine first the magnitude of the shellfish-borne disease in terms of its prevalence and the risks associated with shellfish consumption (R. J. Wittman and G. J. Flick., 1995). We next address the issues of water quality, harvesting, processing, and distribution as they relate to shellfish-borne disease, and present strategies to minimize the risk of disease (R. J. Wittman and G. J. Flick., 1995). Sanitary controls have focused upon edible bivalve mollusks, including oysters, clams, mussels, and scallops, of the class Pelecypoda since they are filter feeders and concentrate pathogens from the water (Metcalf TG. 1975).

During natural climatic problems, fishing catch get reduced or stop completely. This increased the demand of edible oyster because of easily available and affordable cost for the people in general and poor in particular. Present study is an attempt to highlight the quality of edible oysters with relation to microflora.

Study area
Kelva fish market was chosen for this study. Kelva is the tourist place of Palghar Taluka which is situated at the coastal area of Arabian sea having geographic coordinates of 19°37'9"N 72°43'23"E. The market is near the fishermen colony, Figure No. 1 and 2.
MATERIALS AND METHODS

A total of 12 samples of edible oysters (Crassostrea gryphaoides) were collected from Kelva market during the period from 2016-17. Samples were collected from Kelva market in polythene zip wrap bag, labelled and kept in the ice box and immediately transported from market to the Zoology department research Laboratory of S.D.S.M. college, Palghar within an hour. Further sample were proceed for the Total Plate count and differential pathogens with standard protocol. The 10 gram of edible oyster already depurated from shell was transferred to a sterile beaker to which 90 ml of normal saline solution (NSS) was added. The sample were serially diluted by 10 fold serial dilution method in the normal saline solution up to $10^{-7}$. The $10^{-7}$ dilutions were used in 0.1 ml quantities for the Standard Plate count (SPC) on Plate count agar (PCA). The agar plates were inoculated by pour plate method and incubated at 37°C for 24 hrs. The $10^{-3}$ dilutions were taken for plating following differential media simultaneously during processing of the samples. Baird Parker agar, Slanetz and Bartley agar, Macconkey agar, Violet red bile agar, TCBS agar. Salmonella Shigella agar and Xyllos lysine deoxycholate agar were streaked after enriching the sample in selenite cystine broth at 37°C for 18 hrs. Suspected pathogens were further identified by growth on biochemical tests (crown and steel, 1993 and Hi-media 1992, 2016, 2018). Authentication of representative organism was carried out at geneOmbio lab Baner, Pune.

RESULT

Total 12 samples of edible oyster (Crassostrea gryphaoides) were collected from Kelva market and the same were processed for Total viable count (T.V.C) and different pathogenic bacteria. The T.V.C. ranged from $00\times10^2$ to $60\times10^3$ (cfu/ml). Out of 12 samples processed, the total of 64 isolates were isolated. Pseudomonas spp. and Aeromonas spp. Occurred in maximum number of samples (12) followed by Enterobacter spp. (09), Providencia spp. (08), Shewanella spp. (06). The sample wise number is shown in Table-land % wise pathogenic microbes in Table-2 and figure 3.

**Gram Negative Rods**

In the present study total 64 isolates were isolated from the 12 samples of edible oysters of the Kelva market (Table-2 and figure-3). Aeromonas spp. encountered in maximum samples and constituted more than (42%) followed by Pseudomonas spp. (28%), Enterobacter kobei (14%), Providencia vermicola (13%) and Shewanella algea (3%).

![Figure 1 and 2 - Kelva fish market of Palghar Taluka.](image)

**Table 1 Pathogenic microbes of edible oyster (Crassostereagryphaoides) from Kelva Market of Palghar**

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Name of microbes</th>
<th>Total No. of microbes</th>
<th>T.V.C=$10^3$ (cfu/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pseudomonas stutzeri, Pseudomonas silviensis, Providencia vermicola, Aeromonas veronii, Aeromonas taiwanensis (2)</td>
<td>09</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>Pseudomonas stutzeri, Providencia vermicola, Aeromonas taiwanensis (2)</td>
<td>04</td>
<td>00</td>
</tr>
<tr>
<td>3</td>
<td>Shewanella algea, Aeromonasveronii, Aeromonas taiwanensis, Enterobacter kobei</td>
<td>06</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>Pseudomonas stutzeri, Shewanella algea, Aeromonas taiwanensis (2), Enterobacter kobei</td>
<td>05</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>Pseudomonas stutzeri, Providencia vermicola, Enterobacter kobei</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>Pseudomonas stutzeri, Providencia vermicola, Aeromonas veronii, Enterobacter kobei</td>
<td>04</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>Pseudomonas stutzeri, Aeromonas taiwanensis(2), Enterobacter kobei</td>
<td>04</td>
<td>08</td>
</tr>
<tr>
<td>8</td>
<td>Pseudomonas stutzeri, Pseudomonas silviensis, Aeromonas veronii, Aeromonas taiwanensis, Enterobacter kobei</td>
<td>05</td>
<td>60</td>
</tr>
<tr>
<td>9</td>
<td>Pseudomonas stutzeri, Pseudomonas silviensis, Providencia vermicola, Aeromonas taiwanensis(2), Enterobacter kobei</td>
<td>06</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>Pseudomonas stutzeri, Pseudomonas silviensis, Providencia vermicola, Aeromonasveronii, Aeromonas taiwanensis(2), Enterobacter kobei</td>
<td>07</td>
<td>08</td>
</tr>
<tr>
<td>11</td>
<td>Pseudomonas stutzeri, Pseudomonas silviensis, Providencia vermicola, Aeromonasveronii, Aeromonas taiwanensis, Enterobacter kobei</td>
<td>05</td>
<td>09</td>
</tr>
<tr>
<td>12</td>
<td>Shewanella algea, Aeromonas taiwanensis (2), Aeromonas veronii</td>
<td>06</td>
<td>30</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>64</td>
</tr>
</tbody>
</table>

**Table 2 percentage of different pathogenic microbes isolated from edible oyster (Crassostereagryphaoides) of Kelva Market, Palghar**

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Name of Isolates</th>
<th>Isolates from no. of samples %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pseudomonas stutzeri</td>
<td>12 (19)</td>
</tr>
<tr>
<td>2</td>
<td>Pseudomonas silviensis</td>
<td>06 (9)</td>
</tr>
<tr>
<td>3</td>
<td>Providencia vermicola</td>
<td>08 (13)</td>
</tr>
<tr>
<td>4</td>
<td>Shewanella algea</td>
<td>02 (3)</td>
</tr>
<tr>
<td>5</td>
<td>Aeromonas taiwanensis</td>
<td>20 (31)</td>
</tr>
<tr>
<td>6</td>
<td>Aeromonas veronii</td>
<td>07 (11)</td>
</tr>
<tr>
<td>7</td>
<td>Enterobacter kobei</td>
<td>09 (14)</td>
</tr>
<tr>
<td>G.T.</td>
<td></td>
<td>64 (100)</td>
</tr>
</tbody>
</table>

![Figure 3 Diagrammatic percentage of different pathogenic microbes isolated from edible oyster(Crassostereagryphaoides) of Kelva market, Palghar](image)

DISCUSSION

**Gram Negative rods**

In the present study only gram negative rods could be isolated from the 12 samples of edible oysters. The maximum number...
shared by *Aeromonas* spp. (42%) The genus *Aeromonas* consists of gram-negative rods widely distributed in freshwater, estuarine, and marine environments [Holmes et al., 1996 and Martin-Carnahan et al., 2005]. *Aeromonas* species cause a wide spectrum of disease syndromes among warm- and cold-blooded animals, including fish, reptiles, amphibians, mammals, and humans (Gosling et al., 1996 and Janda et al., 1996). *Aeromonas* strains are primarily inhabitants of aquatic environments, often associated with fish and human diseases (Figueras, 2005; Martin-Carnahan and Joseph, 2005). The most common clinical presentation of *Aeromonas* is diarrhoea, followed by localized soft-tissue infections and bacteraemia, the prevailing associated species being *A. veronii*, *A. caviae* and *A. hydrophila* (Figueras, 2005). *Aeromonastaïwanensis* is a Gram-negative, oxidase- and catalase-positive, non-sporo-forming, motile bacterium of the genus *Aeromonas* isolated from wounds of patients in Taiwan. (Alperi et al., 2009).

18 isolates of *Pseudomonas* spp. were recorded from 12 samples of edible oyster. Out of 18 isolates 12 isolates were of *Pseudomonas putrefaciens* and 06 of *Pseudomonas stutzeri*. *P. stutzeri*, which belongs to the genus *Pseudomonas*, is widely found in soil, fresh water, oceans and animals. It is an aerobic Gram-negative bacterium and a type of denitrifying bacterium (Lalucat et al., 2006). A variety of strains of *P. putrefaciens* have been isolated to study environmental bioremediation. *P. stutzeri* is capable of degrading a number of organic pollutants, such as naphthalene (Bosch et al., 1999). *Pseudomonas stutzeri* is an aerobic, nonfermenting, active, gram-negative oxidase-positive bacteria. Cases of *P. stutzeri* infection concern typically immunocompromised patients with underlying diseases or previous surgery (Noble and Ovemen, 1994). *Pseudomonas stutzeri* is a novel spp. Isolated from a forest soil in sihui city, South China (Wu, Min et al., 2014). No further clinical report is reported of *Pseudomonas stutzeri* and clear function of this species.

09 isolates of *Enterobacter kobei* were recorded in the present finding which is 14% of the total isolates. *Enterobacter kobei* is the species of the *Enterobacter cloacae* complex, which is phenotypically most closely related to the species *E. cloacae* (Harald Hoffmann et al., 2005).

08 isolates of *Providencia vermicola* recorded which is 13% of the total isolates. The enterobacterial genus *Providencia* comprises five species that have been isolated from the colon and faeces of humans (Providencia alcalifaciens, *P. rustigianii*), wounds, urinary tract and respiratory tract of humans (*P. stuartii*), urinary tract of humans, poultry, faeces from reptiles and other environments (Providencia rettgeri) and from faeces of penguins (Providencia heimbachae) summarized by (Penner 1991).

*Shewanella algae* recorded two times and constituted 3% of the total isolates isolated. *Shewanella algae* has been identified as a new bacterial species from clinical samples (Nozue 1992). It is a rare human pathogen and symptoms of infection are often misidentified as Vibrio spp. (Myung 2009). It can be isolated from a wide range of environments, including fresh water, estuary, and the deep sea (Fu et al., 2014).

The suitable processing and preservation methods are required to prevent the pathogenic microbes particularly in post-harvesting period of oyster (Seaman, 1991 and Aaraas et al., 2004). In many countries, cold storage temperature is generally considered as useful preservation methods before sell and consumption (Seaman, 1991 and Aaraas et al., 2004). As example, Australian Shellfish Quality Assurance Programme (ASQAP) recommended that oyster must be stored at ≤10°C for 24 hrs before consumption (Fernandez-piquer et al., 2012). However, consistence refrigeration is difficult to achieve along the entire oyster supply chain, particularly difficult in the developing countries (Madigan, 2008).

**CONCLUSION**

Edible oyster (*Crassostrea grypoides*) naturally possessed microflora due to filter feeding. During the odd season, when there is no fish catch, the edible oyster used to be in high demand. But the oyster depuration is being done under unhygienic conditions by traditional methods which is the cause of concern not only from the load and variety point of view microbes but also the health hazards of sellers and consumers.

**Acknowledgment**

First author is thankful to Dr. Kiran Save, I/C Principal and the Management of S.D.S.M. College, Palghar for motivation and help during this study and to Dr. Anuja Desale, Prof Swapnil Keni, Prof. Pooja Kini, Prof. Ravi Gupta and Prof. Vilas M. Sapte for supporting during laboratory work.

**Reference**


Fu, X.; Wang, D.; Yin, X.; Du, P.; and Kan B.; “Time course transcriptome changes in *Shewanella algae* in


Hoffmann Harald; Schmoldt Sabine; Trülsch Konrad; Stumpf Anita; Bensch Stefan; Blankenstein Thomas; Heesemann Jürgen and Roggenkamp Andreas, Nosocomial urosepsis caused by Enterobacterkobei with aberrant phenotype. DiagnMicrobiol Infect Dis. 2005 Oct;53(2):143-7.


Madigan, T.L. (2008) A Critical Evaluation of Supply-chain Temperature Profile to Optimise Food Safety and Quality of Australian Oysters, Australian Seafood Cooperative Research Centre and South Australian Research and Development Institute, Bedford Park, SA.


---

**How to cite this article:**


DOI: http://dx.doi.org/10.24327/ijrsrc.2019.1011.4215

******