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1900, D. Hilbert announced 23 questions at the International Congress of Mathematicians. Among 
them, the Riemann conjecture is the merger of the Goldbach conjecture, the twin prime conjecture 
and the Riemann conjecture. A law was found that was multiplied by a prime number to form a 
"reciprocal and positive" function (average) and its reciprocal properties. 
Prove the"big O of 1"of the ζ function (ie the distribution and value of the infinite prime number 
between 0 and 1) and the three observed invariants and isomorphic properties, single properties, 
reciprocity, singularity of even and even of odd, and the composition of pure even and pure odd 
numbers. 
The obtained ζ function is normalized to any prime number (integer), the same number of zeros as 
the number of infinite prime numbers. The complex zero on the critical line is L = (0, 1 / 2, 1) ^ Z. 
The abnormal zero is: where Riemann conjecture {1/2}+ 1 (containing twin primes); Goldbach 
conjecture (including odd numbers) Guess) {1/2}^ - 1 = {2} (even). 
 
 

 
 

 
 

 
 

 
 
 
 
 
 
 
 

 
 

 
 

 

 
 

 
 

 
 

 
 
 
 
 
 
  
 

 
 

INTRODUCTION 
 

In 1900, D. Hilbert proposed 23 questions at the 2nd 
International Congress of Mathematicians. The eighth question, 
the Riemann conjecture, was the Goldbach conjecture, the twin 
prime conjecture, and the Riemann conjecture. The merger of 
the three conjectures. In the sense of number theory, these three 
conjectures are the core issues in number theory. 
 

For hundreds of years, many mathematicians have gone 
through their life and devoted themselves to research, created 
many algorithms, promoted the development of number theory, 
and promoted the development of human science and 
technology. However, as Klein said in "The Ancient and 
Modern Mathematical Thoughts": There has been no 
breakthrough in mathematics since 1930, and the Riemann 
conjecture has still not been resolved. “The difficulty lies in 
infinity. It reflects the urgency and arduousness of 
mathematical reform. 
 

This paper finds that the prime number is multiplied to form 
the "reciprocal and positive" mean and mutual inverse rules. 
Prove the " large O of 1" of the ζ function (that is, the 
distribution and value of the infinite prime number between 0 
and 1), and the three one gauge invariances of isomorphism, 

unity, and reciprocity and the singularity of prime numbers. , 
even composition. 
 

Since then, the transformation of traditional logarithm, 
calculus, and logical algebra has been reformed, and the 
"arithmetic arithmetic of four elements without specific prime 
content" has been established, called the circular logarithmic 
equation. Thus, the ζ function can be normalized to a (unit) 
prime number, and the same zero number as the infinite prime 
number is obtained, and L=(0, 1/2, 1) Z is on the critical line. 
Among them, the abnormal zeros are: {1/2}+1 of the Riemann 
conjecture (with twin primes); {1/2}-1={2} (even) of 
Goldbach's conjecture. 
 

The Multiplication of Prime numbers Constitutes the Positive 
Mean and the Reciprocal mean 
 

The Reciprocal Multiplication of the Riemannian Function to 
Form the Reciprocal law 
 

Definition: Infinite prime function, any finite power function 
Z=K(Z±S±N±P) multiplicative combination, non-repetitive 
combination of arbitrary finite primes of infinite program, set 
into infinite arbitrary finite positive and negative high power 
Polynomial. The order of the items is the number of 
corresponding combinations (called coefficients) divided by the 
various combinations (all of which are not demanding 

Available Online at http://www.recentscientific.com 
 International Journal of 

Recent Scientific 

 Research International Journal of Recent Scientific Research 
Vol. 10, Issue, 07(J), pp. 33949-33956, July, 2019 

 

Copyright © Wang Yiping, 2019, this is an open-access article distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is 
properly cited. 

DOI: 10.24327/IJRSR 

CODEN: IJRSFP (USA) 

Key Words: 
 

Riemann conjecture; ζ function 
reciprocity; circular logarithm; norm 
invariance; zero and limit; 

Article History:  
 

Received 15th April, 2019 
Received in revised form 7th May, 2019 
Accepted 13th June, 2019 
Published online 28th July, 2019 
 
 



Wang Yiping., Analysis of Riemann-Goldbach Conjecture Based on Circular Logarithm 
 

33950 | P a g e  

combinations) are positive and reciprocal average function 
values. Collectively referred to as "prime function" 

Heve (P) K(Z±S)= ∏P{x1
KSx2

KS…xp
KS…xq

KS}∈{XS}K(Z±S)∈{X} 

K(Z±S) 

where: ∏P indicates that P is a multiplicative set of P prime 
numbers, and the combination coefficient C(S±P). A combination 
of unknown prime numbers, in uppercase font{X0}

K(Z±S±N-P); a 
combination of known prime numbers, with a hollow font 
{D0}

K(Z±S±N+P) 

 

Set: under regularization conditions, (1/C(S±0))=1; (1/C(S-p))= 

(1/C(S+p)); {X0}
K(Z±S-P)≠{D0}

K(Z±S+P) ； 
 
Where the power function is not necessarily written complete 
or missing, there are  

Z=Z±S±N±P、Z=Z±S±N、Z=Z±S、Z=Z，K=(+1,0,-1), the 
same as below).  
 
After extracting the logarithm of the circle: 
 
(1-η2)K(Z±S±P)={X0}

K(Z±S-P)·{D0}
K(Z±S+P)=                                 

{X0}
K(Z±S±P)/{D0}

K(Z±S±P)；                                                 （ ）1.1  

heve：    {X0}
K(Z±S±N-P) = {D0}

K(Z±S±N+P)；  
={(1/C(S±0))[∏PXi

K]}K(Z±S±N±0)+{(1/C(S±1))∑[Xi
K+…]}K(Z±S±N±1)+ 

… 
+{∑(1/C(S±p))[∏P(Xp)

K+…]}K(Z±S±N±p)+…+{∑(1/C(S±q))[∏P(Xq)
K

+…]}K(Z±S±N±q) 

={X0}
K(Z±S±N-0) +{X0}

K(Z±S±N-1) +…+{X0}
K(Z±S±N-p) 

+…+{X0}
K(Z±S±N-q)； （ ）     1.2  

or：={P1}
K(Z±S±N)+{P2}

K(Z±S±N)+…+{Pp}
K(Z±S±N)    

+{Pq}
K(Z±S±N)；                                                                   （ ）1.3  

 

Formula (1.3) P is a prime number, and the Riemannian 
function is reciprocal, called the reciprocal function. (the same 
below) 
 

C(S±P) =C(S+P)=C(S-P)= (s-0) (s-1)(s-2)…(s-p)！/ P(p-1) …3,2,1！ 
（ ）1.4  
where: {X}K(Z±S±N-P) in the unknown function is called (P=-P) 
reciprocal function; 
 

Known function{D}K(Z±S±N+P) is called (P=+P) positive number 
function; 
 

 
{X0}

K(Z±S±N-P) in the unknown mean function (P=-p) reciprocal 
average; 
 

It is known that the average function 
 

 {D0}
K(Z±S±N+P)  is called (P=+p) positive mean value; 

{X±D}K(Z±S±N±P)is called (P=±p) combination equation in the 
combination function; 
 

{X0±D0}
K(Z±S±N±P) in the combined averaging function (P=±p) 

combined averaging equation; 
 

Proof: Reciprocity of each item sequence combination (±P) 
level. 
 

Proof: take the number of arbitrary finite primes in infinity 
(Z±S) called power Dimension; (Z≥S≥P≥0); from natural 
number P=(0,1,2, …,P) to infinite order Combination, using an 
iterative method. 
 

{X}K(Z±S±P) is sequentially divided by∑(1/C(S±P)) 
[∏(xaxb…xp…xq)

K+…]K(Z±S±P) ；   
 

In particular, when the prime number is all consecutively 
multiplied  
 

{X}K(S±P±0)=[∏(x1x2…xp…xq)]
K(S±P±0)； C(P±0)=1；  

heve：     {X}K(Z±S±P) =∑(1/Cp+1) 
[∏(x1·x2·…·xp·…·xq)

K+…]K(Z±S±P)   

=  [∑(C(P±0)) [∏(x1x2…xp…xq)p
K]K(Z±S±P) 

/ ∑(1/C(P+1))(x1+x2+…+xp+…+xq)p
K(Z±S±P+1)] 

·∑(1/C(P+1))(x1+x2+…+xp+…+xq)p
K(Z±S±P+1)）  

= [∑(1/C(P-1))
-1Σ(x1

-1+x2
-1+…+xp

-1+…+xq
-1)]K(Z±S±P-1) 

·[∑(1/C(P+1))
+1Σ(D1

+1+D2
+1+…+Dp

+1+…+Dq
+1)]K(Z±S±P+1) 

= {X0}
K(Z±S±P-1)·{D0}

K(Z±S±P+1)                                 （ ）1.5  
{D0}

K(Z±S±P+1)=[(1/C(P+1))
+1Σ(D1

+1+D2
+1+…+Dp

+1+…+Dq
+1)]K(Z±

S±P+1)={X0}
K(Z±S±P-1) 

on the contrary: 
   {X}K(Z±S±1) =[(Cp+0)∏p(x1·x2·…·xp·…·xq)]

K(Z±S±0)
 

/  [(1/Cp-1)
-1(x1

-1+x2
-1+…+xp

-1+…+xq
-1)]K(Z±S-1)  

· [(1/Cp-1)
-1(D1

-1+D2
-1+…+Dp

-1+…+Dq
-1)]K(Z±S-1) 

= {X0}
K(Z±S±P-1) ·{D0}

K(Z±S±P+1)                                          （ ）1.6  

Among them： {X}K(Z±S±P) / 
∑(1/C(P+1))(xa+xb+…+xp+…+xq)

K(Z±S±P+1)={X}K(Z±S-P) 
 
for the same reason: iterations can be iterated sequentially 
(P=0, 1, 2, 3, 4, ... natural numbers). After infinite (Z) 
iterations, each level combination 
 
get:       {X}K(Z±S±p) = [(1/CS±p)∏(x1·x2·…·xp·…·xq) ]

K(Z±S±p)
 

/  (1/CS+p)∑(∏x1
k+∏x2

k +…+∏xp
k+…+∏xq

k) K(Z±S+p) 
· (1/CS-P)∑(∏D1

k+∏D2
k+…+∏Dp

k+…+∏Dq
k) K(Z±S-p) 

= {X0}
K(Z±S-p)·{D0}

K(Z±S+p)；                                             （ ）1.7  
 

In particular, the concept of "average" can be used without 
compromising all combinations so that the coefficients are 
constant and the average is the same. 
 

The “reciprocal mean and positive mean” of the prime 
function form the logarithm of the circle 
 

The equation (1.6) is used to further derive the reciprocity of 
each level (reciprocal law) to form the logarithm of the circle. 
 

heve：            {X}K(Z±S±p) = {X0}
K(Z±S-p)·{D0}

K(Z±S+p) 

         {X}K(Z±S±p)={X0}
K(Z±S-p)·[{D0}

K(Z±S+p)/ 
{D0}

K(Z±S±p)]·{D0}
K(Z±S±p)    

= (1-η2)K(Z±S±p) ·{D0}
K(Z±S±p)                                              （ ）1.8  

 0≤(1-η2)K(Z±S±p) ={D0}
K(Z±S±p)/{D0}

K(Z±S±p)]≤1                  （ ）1.9  
where:  {X0}

K(Z±S-p) = {X}K(Z±S±p)/{X0}
K(Z±S-p) 

 

The formulas (1.8) and (1.9) reflect the multiplication of 
infinite prime numbers, which consists of a complete 
"reciprocal mean and positive mean", which is developed 
between the infinite series of logarithms [0~1]. 
 

Prime NumberTheorem ~ "large O of 1" ~ Unit circle 
logarithm 
 

 In 1737, L.Euier published a famous formula. 

ζ(S) =(∑n-S) +1=∏(1-P-S)-1； or  ζ(S-1) =(∑n-S) -1=∏(1-P-S)；                    
（ ）2.1  
 
where P traverses all prime numbers. The Riemann function is 
precisely combined with the prime number. In other words, use 
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This prime number multiplication can prove that the prime 
number has an infinite number. 
 

The prime number theorem: Gauss-Lehrende elaborates (π(x-

S)=x/lnx). Most of the related discussions are based on the 
assumption of GRH. Such as logarithmic integral: 

Li(x)=∫1/ln(t)dt；gamma function; ζ(s)Γ(z)= ∫ (uz-1)/(eu-1)du; 
Dirichlet L The function L(s,x) =∑X(n)/ns (Re(s)≥1). 
 

Since 1896, people have undoubtedly determined the ~ fold of 
π(n)~Li(x), and the closer N is infinitely enlarged, the 
closerπ(n)is to Li(x). Some people have calculated π(n)-
Li(x)≤1; but some people have calculated the behavior ofπ(n)-
Li(x)≤1; Mobius μ function and  M  function (accumulated 
value of μ) Closely related to ζ(S).   
 

"error analysis" items and limits 
 

One of the conjectures of Riemann's conjecture is "How many 
prime numbers are less than a given value?". The most valuable 
prime theorem O(√x lnx). It does not have the premise stated in 
traditional number theory: "If the Riemann function is 
established, then...". 
 

In 1901, von Koch proposed O(√x lnx). In the study of modern 

number theory: when（l,k）=1, in the arithmetic sequence 
L+xn  (n=1,2,3,…), the prime number not exceeding x numbers 
isπ(x,k,l), Then there is 
 

π(x,k,l),=(1/Φ(k) Li(x)+O(√x lnx)                                    （ ）2.2  
 

In equation (2.2), O(√x lnx) is called the "large O of 1" symbol 
and the Mobius function. 
 

Definition of "large O of 1": If the size of function A never 
exceeds a fixed multiple of function B for a sufficiently large 
argument, then function A is the large O of function B. 
 

PNT (Principal Theorem) another popular expression O(x(1/2)+ε) 
is the evolution of  Von ·Koch O(√x lnx). 
 

O(x(1/2)+ε) = Li(x) - π(x,),                                                  （ ）2.3  
 

Here (ε) is a "large O of 1" and consists of a certain modulus 
function value. 
 

In September 2018, the British mathematician Atia believed 
that the ζ function had a fixed modulus function value (1/137). 
This paper believes that this is not correct and should be a 
relatively variable module function value (proven later). 
 

In 1914, J.E. Littlewood proved that O(x(1/2)+ε)≥0; and this 
symbol would turn over and over. Breaking through the 
industry, one person thinks that O(x(1/2)+ε)≤0;  
 

In 1933, South Africa's Sanlay Skewes proved that the first 
arbitrary flipping of x is not greater than... no greater than e97 
power. The current Schutz number is no more than 1.4*10316. It 
reflects "be careful when dealing with infinity." But (ε) no 
matter how small (large), there is an error termε(x)=(1/2)[Li(x)-
π(x)]. which cannot be eliminated. I don't know what kind of 
error function it should be. Many mathematicians have devoted 
their energies to research (ε) and have no satisfactory results. 
 

At present, O(x(1/2)+ε)of the traditional number theory "error 
analysis", the best result [4] (ε) is "large O of x". "How does the 
big O of x” go to the” big O of 1" has not been solved yet. This 
can be verified by the "circle logarithmic equation". 
 

Verification: You can't lose the different premise of traditional 
number theory. "If the Riemann function is established, 
then...". If the Riemann function does not hold, then many parts 
of the number theory have to be reinstated. 
 

Assume:  Li(x) (logarithmic integral) andπ(x) (the prime 
number theorem) be different prime distribution functions, 
ε(x)=(1/2)[Li(x)-π(x)],ε(x)=(1/2)[Li(x)-π(x)] using  
 

Bayesian relativity principle, Einstein's theory of relativity and 
set theory to expand into circular logarithm theory, 

heve： 
 

(1-η2)K(Z±S±p) = { [Li(x)-π(x)]/[Li(x)+π(x)]}K(Z±S±p) 
           = {[ε (x0)-π(x)]/ε (x0)}

K(Z±S±p) 
           ={[Li(x)-ε(x0)]/ε(x0)}

K(Z±S±p);                                （ ）2.4                      
  O(x(1/2)+ε)K(Z±S±p)~ε(x) K(Z±S±p) 
= {(1/2)[Li(x)-π(x)]/(1/2)[Li(x)+π(x)]·(1/2)[Li(x)+π(x)]}K(Z±S±p) 

= (1-η2)K(Z±S±p) ε (x0)
K(Z±S±p)；                                           （ ）2.5  

0≤(1-η2)K(Z±S±p) ≤1； K=(+1,0,-1) ；                                （ ）2.6  
 

Equation (2.5) proves that ε(x) K(Z±S±p) is stable, and ε(x0) is a 
constant modulus of the (1-η2)K(Z±S±p)prime number distribution 
of each level. - Specify the average of the prime distribution 
function before a certain value. 
 

Here, O(x(1/2)+ε)is assumed to be x(1/2), and ε(x)K(Z±S±p)  can only 
be "large O of x". Under the two kinds of infinite prime 
distributions, the positive and negative property errors tend to 
be(ε(x) K(Z±S±p)), However, (ε)K(Z±S±p)≠0 does not ensure that it is 
all on the(x(1/2)) critical line. 
 

In 1976, Hungarian number theory expert Paul Turan was still 
whispering "big O of 1" when he was dying of cancer. This 
kind of research on the theory of numbers is awe-inspiring. 
Reflecting the "big O of 1" (the distribution and value of the 
infinity prime between 0 and 1) is a key issue in number 
theory. 
 

Applying "unit circle logarithm" in number theory to 
achieve zero error expansion 
 

In 2013, the American Chinese number scientist Zhang Yitang 
applied the concept of set theory. Under the premise of not 
relying on unproven guess, it is found that there are infinite 
pairs of twin prime numbers, the interval is less than 70 million 
(equivalent to ε(x0)

K(Z±S±p)=70 million, a constant modulus) The 
twin prime number formula, although the formula still has 
errors under infinite conditions, it has taken a big step on the 
road to the twin prime guess problem. 
 

Definition: logarithm of unit circle ": Each sub-item is obtained 
by dividing it from its own total project,Features: Ensure that 
the values, positions and distribution methods of the sub-items 
inside the unit body are unchanged. 
 

Proof of development: This article is not important for whether 
the Riemann function is established or not. Proof is as follows: 
 

It consists of the complete "reciprocal mean and positive mean" 
of the prime number multiplication, which is given by Euler's 
formula: 
 

  ζ(S) -1 =∑(n-S)-1=∏(1-P-S), 
 

Assume： 
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∏(1-Pi
-S) = (1-P1

-S) (1-P2
-S) … (1-Pp

-S) …(1-Pq
-S)∈{PH}]K(Z±S±p) 

 

heve： 
 

{(1-P-S)1+(1-P-S)2+…+(1-P-S)p+…+(1-P-S)q}
K(Z±S)=∑{1-Pi}

K(Z±S) 

={PH}]K(Z±S±p)， 
 

or：  {(P-S) 1+(P-S) 2+…+(P-S) p+…+(P-S) q}
K(Z±S)=∑{Pi}

K(Z±S) 

={PH}]K(Z±S±p)， 
 

or：  
 

 (P)1·(P)2·…·(P)p·…·(P)q∈∏{Pi}
K(Z±S)={PH}]K(Z±S±p)， 

 

make：    
 

(1-ηH
2)K(Z±S±p)= [(Pi

-S) /{PH}]K(Z±S±p)， 
 

(1) Topology and probability expansion on the logarithmic 
plane (ie the combination of the square of the prime real part 
and the square of the imaginary part) (1) Topology and 
probability expansion on the logarithmic plane (ie the 
combination of the square of the prime real part and the square 
of the imaginary part)   
heve：      
 

 (1-ηH
2)K(Z±S)=[∑{Pi

2}/{PH}]K(Z±S) 

  = (1-η1
2)K(Z±S±1)+(1-η2

2)K(Z±S±2) +…+ (1-ηp
2)K(Z±S±p) +…+ (1-

ηq
2)K(Z±S±q) 

= {1}K(Z±S)；                                                                     （ ）3.1  
 

(2) Topology and probability expansion on the logarithmic axis 
 

(ηH)K(Z±S)=[∑{Pi}/{PH}]K(Z±S) 

= (η1)
K(Z±S±1)+(η2)

K(Z±S±2) +…+ (ηp)
K(Z±S±p) +…+ (ηq)

K(Z±S±q) 

={1}K(Z±S)；                                                                      （ ）3.2  
 

Proof: In the traditional number theory, the quantitative 
statistical workload of infinite prime numbers is too large, 
using the common logarithm log10, or the natural logarithm of 
ln e, or the (man-made, natural) randomly distributed count 
segment Pi value, with subscript (10, e , P) means: 
 

For example: {PH}K(Z±S) is the sum of the sub-items of the 
prime number before a certain value is known. 

         (log10)1^(log10)2^…^(log10)p…^(log10)q=∑{∏Pi}
K(Z±S)， 

(lne)1^(lne)2^…^(lne)P…^(lne)q=∑{∏Pi}
K(Z±S)， 

get：(1ηH
2)K(Z±S)=[∑{∏Pi}(10,e,P)/{PH}(10,e,P)]

K(Z±S)={1}(10,e,P)
K(Z±S

)；                                                                                    （ ）3.3  

In the formula: (1-ηH
2)K(Z±S±p) is called the logarithm of the unit 

circle, which is called the first one gauge invariance. 
heve           ε(x) K(Z±S±p)=O(x(1/2)+ε)  

=(1-η2) K(Z±S±p)·(1-ηH
2) K(Z±S±p) ε(x) K(Z±S±p) ；                   （ ）3.4  

 
Equation (3.4) ε(x)=(ε(xH)K(Z±S±p))=(1-ηH

2)K(Z±S±p)=1 for each 
level O(xε); ε=0 ; becomes "big O of 1", and there is proof that 
O(x(1/2)+ε) does not need to assume the (x(1/2))premise, and 
(x(1/2))=(1-η2)K(Z±S±p)=(1/2) K(Z±S±p). Here, the stability of the 
prime distribution in the unity of [0~1] and the fact that the 
zero error is on(x(1/2)) are reflected. 
 

ζ function and circular logarithmic equation 
 

There is a famous theorem about the Emilet matrix, which says 
that "all eigenvalues of the Emilet matrix are real numbers", 
from which "Emilt matrix and ζ function operator eigenvalues 
and all coefficients of polynomials are derived. They are all 

real numbers." The balanced polynomial coefficients have a 
regularized distribution form, and the coefficient distribution 
rule is consistent with the "Yanghui-Pascal triangle 
distribution".  
 

With the above preparation, we study the regularization 
coefficient polynomial composed of Riemann's function to 
encounter the "reciprocal function" {X}K(Z-S) with the prime 
number as the independent variable, and the balanced prime 
function as the "positive number function" {D}K(Z+S). 
 

The polynomial regularization coefficient divided by the 
corresponding combination form, get the average 
 

Infinite prime polynomials contain prime numbers 
{a,b,…p,…,q}K(Z±S)∈{X}, with infinite prime numbers in any 
finite prime S range, and various non-repeating combination 
sets form polynomials (items Order, calculus). The prime 
infinite regularization combination becomes a polynomial 
term (or calculus order) expressed by a power function 
Z=K(Z±S±N±P) 

heve：      
 

{X0}
K(Z-S)={D0}

K(Z+S) 

       = ∑[ (1/C(S±p))
K{∏(xa

K xb
K…xp

K…x q
K)K +…}]K(Z±S)；  

 {X0}
K(Z±S±P)= xK(Z±S±0)+BxK(Z±S±1)+…+PxK(Z±S±p)+…+QxK(Z±S±q)  

     = (1/C(S±0))
KxK(Z±S±0)+(1/C(S±1))

KxK(Z±S±1)+… 
     + (1/C(S±p))

KxK(Z±S±p)+…+(1/C(S±q))
KxK(Z±S±q) 

                             {(1/C(S±0))
K (∏xi

K)}K(Z±S±N±0)    

                              {∑(1/C(S±1))
K(∑x1)

K}K(Z±S±N±1) 

=                             {……}                                            
                               {∑(1/C(S±p))

K(∏xp)
K}K(Z±S±N±p) 

                               {(1/C(S±q)
K(∏xq)

K}K(Z±S±N±q)      
=          x01

K(Z±S±0)+x02
K(Z±S±1)+…+x0p

K(Z±S±p)+…+x0q
K(Z±S±q)；             

( 4.1） 
here, the item sequence combination of the polynomial 
elements is explained: 
 

There are: item order Item sequence 

(1)、0 item order (p= Z±S±0), C(S-0)=1：The independent 
variable is fully primed and multiplied. 
 

heve：  
 

{x0}
 K(Z±S-0)= {D0}

K(Z±S+0) = [(1/C(S±0))
K[∏(xa

K xb
K…xp

K…x 

q
K)K]K(Z±S±0) ；                                                                （4.2） 

(2)、1 item order (p=Z±S±1), C(S-1)=S：Prime number (1)-(1) 
continuous combination   
(called linear equation term) 

heve： 
 

{x0}
 K(Z±S-1)={D0}

K(Z±S+1)=∑(1/C(S±1))
K[xa

K+ xb
K+…+ 

xp
K+…+xq

K]K(Z±S±1)； 

                                                                                         （4.3） 

(3)、2 item order（p=Z±S±2), C(S-2)=S(S-1) /2!，Prime 

number (2)-(2) combinationheve： {x0}
 K(Z±S-2)={Dp}

 K(Z±S-

0)=∑C(S±2))
K{∏(xaxb)

 K +…}K(Z±S±2)；   

                                                                                         （4.4）  

(4)、p item order (p=Z±S±p), C(S-p)=S(S-1) (S-2) (S-

P)/P!：Prime number "(p)-(p) combination". 
 

heve： 
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{x0}
 K(Z±S-p) ={Dp}

K(Z±S+p)=∑(1/C(S±p))
k{∏(xaxb…xp)

 K +…} 

p
K(Z±S±p)；                                                                （4.5）  

(5)、q item order (p=Z±S±q), C(S-q)=S(S-1) (S-2) (S-

q)/q!：Prime number "(q)-(q)combination". 
 

heve：  
 
{x0}

K(Z±S-q) ={Dq}
K(Z±S+q)=∑(1/C(S±q))

K[∏(xaxb…xp…x q)
 K +…] 

q
K(Z±S±q)；    

                                                                                       （4.6） 

(6)，D balance term order(p=(Z±S), C(Z+S)=1 is known as a 
holographic multiplicative combination; 

heve：    

     {x0} K(Z±S-0) = {KS√∏X(ab…p…q)}
K(Z-S)；  

{D0}
K(Z±S+0) = {KS√∏D(ab…p…q))

K(Z+S) ={KS√D}K(Z-S) = D；  

（4.7）       

(7)，Prime polynomial regularization coefficient sum Prime 
polynomial regularization coefficient sum 
∑(1/C(Z±S))

 K(Z±S) = C (S-0)+C (S-1)+…+C (S-p)+…+C (S-q)+C (S+0) 

= {2} K(Z±S)；                                                                   （4.8） 
(8)，The regularized distribution of the combined coefficients 
conforms to the Yang Hui-Pascal triangle distribution. 
 

C(Z±S+N)=C(Z±S-N) ；                                                          （4.9） 
 

(9)， In general, {D}≠{x} K(Z±S) after extracting the logarithm of 
the circle, obtain equilibrium (or relative balance) {D}={x} 

K(Z±S);    
                                     

among them：  {D} = {D0}
K(Z+S) ；Discrete state statistical 

calculation；  

                                                                                                                                                         （4.10） 

 {X} = {X0}
K(Z-S) = {KS√D}K(Z-S)；Mathematical analysis of 

entangled states;                                                            （4.11） 
 

The combination of prime polynomial elements has a natural 
number unity, and the power dimension of the sum of the 
regularization coefficients presents the expansion and traversal 
of the natural number {2}K(Z±S), ensuring zero error expansion 
of the unit body function. 
 

Equations (4.1)~(4.11) are clearly consistent with the 
Riemannian function. Combining the reciprocal circular 
logarithm to ensure the convergence of the function by 
K=(+1,0,-1). The (K) property function controls the 
convergence of the function so that the inverse harmonic 
function does not spread. 
  

Combined set expansion of prime polynomials 
 

heve：  
 

AxK(Z±S±N±0)+ BxK(Z±S±N±1)+…+PxK(Z±S±N±p)+…+QxK(Z±S±N±q)± D 
= C(S±0)x

K(Z±S±N+0)D0
K(Z±S±N+0)+ C(S±1)x

K(Z±S±N+0)D0
K(Z±S±N+1)+… 

+C(S±p)x
K(Z±S±N-p)D0

K(Z±S±N+p)+…+C(S±q)x
K(Z±S±N-q)D0

K(Z±S±N+q)± D 
= {x0±D0)

K(Z±S±N)   
= (1-η2)Z{0,2}K(Z±S){D0}

K(Z±S±N)；   
                                   （ ）5.1  

and：                    (1-η2)Z ~(η)Z={KS√D / x0}
Z 

                            {KS√D / x0}
K(Z±S±N±0) 

                             {KS√D / x0}
K(Z±S±N±1) 

=                            {……}   
                               {KS√D / x0}

K(Z±S±N±p) 

                               {KS√D / x0}
K(Z±S±N±q)                                                    

                          (1-η2)K(Z±S±N±0)  0  0 … 0 … 0  
                          0  (1-η2)K(Z±S±N±1)    0 … 0 … 0          
=                         {……}                                                   （ ）5.2  
                        0    0 …(1-η2)K(Z±S±N±p) … 0 … 0  
                       0  0   0 … 0 … (1-η2)K(Z±S±N±q)  

                       (1-η2)K(Z±S)= {KS√D} K(Z-S)/{X0}
K(Z+S±N) 

                     = ∑(1/C(Z-S))
-1{ KS√∏X(ab…p…q)

K(Z-S-P)+…} 
                     / ∑(1/C(Z+S))

+1{D(ab…p…q)}
K(Z+S+P)+…}K(Z+S±N) 

=    [{KS√D} /{D0}]K(Z±S±N)；                                            （ ）5.3  

             0 ≤(1-ηD
2)K(Z±S±N)≤{1} K(Z±S±N)； （ ）                          5.4  

get: isomorphic logarithm (ie polynomial isomorphic time 
calculation) (1-ηD

2)K(Z±S±N) Called the second norm invariance. 
 
            (1-η2)K(Z±0)~(1-η2)K(Z±1)~…~(1-η2)K(Z±p)~…~(1-

η2)K(Z±q)；                                                                          （ ）5.5  

         （1）Formulas (5.1)-(5.5) also prove 

          Small balance zero： {x0-D0)
K(Z±S±N) = (1-

η2)Z{0}K(Z±S){D0}
K(Z±S±N)；                                                 （ ）5.6  

Big balance zero：  {x0+D0)
K(Z±S±N) = (1-

η2)Z{2}K(Z±S){D0}
K(Z±S±N)；   

                                                                                    （ ）5.7                    
In particular, the size zero balance cancels the "imaginary" "i 
crutches" and becomes a realistic combination of entities, 
conveniently expanding into infinite dimensional polynomials. 
The first-order (real part) of the log logarithm factor is 
equivalent to the second-order (re-imaginary part), and thus the 
"i cane" is also eliminated.. 
 
(2) The value of the crossing between the level of the prime 
function (including the value of the calculus order) (the sum of 
the total coefficients of the polynomial)        
(1-η2)K(Z±S±ΔN) = (1-η2)K(Z±S)· (1-η2)K(±ΔN)                          （ ）5.8  
(1-η2)K(±ΔN) ={2}K(±ΔN) ；      
                                                                                          （ ）5.9  
Among them: ΔN = 1, 2, 3, ... natural number. (called qubit on 
the computer, the order value in calculus). 
 
Where: the polynomial power function is a set of 
Z=K(Z±S±N±P), (Z) represents the completeness of the infinite 
prime algebraic closed chain, and (±S±N) represents the finite 
finite number of complex-dimensional subdimensions within 
the closed set of populations, (±P) All prime numbers do not 
repeat the combined set {X}K(Z±S±P) . { } indicates a 
combination set. “~” means equivalent and time isomorphism. 
(Note: The above formula (5.2) formula matrix or horizontal 
expression means no change.) 
 

The complex zero distribution of the ζ function and the 
logarithmic equation 
 

We have encountered many functions in mathematics, the most 
common being polynomials and trigonometric functions. 
Riemann has developed it into the entire complex plane, and 
the complex variable s contains a lot of information. As in the 
case of polynomials, the information of a function is mostly 
contained in the information of its zero point. Therefore, the 
zero point of the Riemann function becomes a top priority for 
everyone. 
  
here are two types of zeros, one is the real zero at s=-2, -4,...-
2n,..., called the ordinary zero: one is the complex zero. 
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Riemann's conjecture is that the real part of these complex 
zeros is (1/2), that is, all complex zeros are on the {1/2}Z line 
(hereafter called the critical line). Historically, finding the zero 
of a polynomial, especially the complex root of an algebraic 
equation, is not a simple matter. 
 

In 1914, Hardy first proved that there were infinite points on 
this critical line. In 1981, an inspection of 200 million ζ(s)=0 
was established by electronic computers. In 1975, Levinson 
proved that NO(T) ≥ 0.3474N(T). In 1980, China's Lou Shituo 
and Yao Qi proved that NO(T)≥0.35N(T). 10 years ago we 
knew that there was (2/5) on the critical line of this complex 
variable. This paper will prove that the abnormal zero point 
(1/2) is (2.5/5) on the critical line of this complex variable 
function, that is, the infinite zero point is 100% completely on 
the critical line of the ζ function. 
 

The core of the fourth chapter is to convert the ζ function into 
prime multiplication (Eulerian formula); the prime 
multiplication transforms from a combination set to a prime 
polynomial; the principle of relativity converts a prime 
polynomial into a log-logarithmic equation with no specific 
prime content.  

heve：              

 {X}K(Z±S±p)=(1-η2)K(Z±S±p){X0}
K(Z±S±p)；                       （ ）6.1  

0≤∏(1-η2)K(Z±S±p)=∑(1-η2)K(Z±S±p)≤1；                             （ ）6.2  
 

ζ function and property logarithm 
      

According to the inverse law of circular logarithm, you can 
use: the total function of each function (including the combined 
form) of the ζ function and the circular log, divided by the 
average value, you can get the positive and negative (odd 
logarithm) and the positive and negative pairs. Number (even 
logarithm) 
 
Assume:  
 
{x0H} K(Z±S±P)=∑(1/C(S±P) )

K[(∏x i) +…] K(Z±S±P);  
{x0i}=∑(1/C(S±P) )

K[(∏x i)]
 K(Z±S±P)     

heve：         { x0H/x0i}
K(Z±S±P)= (1-ηK

2)K(Z±S±p 

 
Obtained: the parity of the logarithm of the property circle (K = 
+1, 0, -1) obtained from the logarithm of the isomorphic circle, 
which is called the logarithm of the property circle, and 
belongs to the third one normative. 
There is an even function:  
 
 {x±D)K(Z±S±P)=(1-η2)Z{0}K(Z±S){D0}

K(Z±S±p)；  

Satisfy:(1-ηK
2)K(Z±S±p)=∑(1-ηK

2)K(Z±S-p)+∑(1-ηK
2)K(Z±S+p)；   

（ ）6.3  
There are odd functions: 
 
{x±D)K(Z±S±P)= (1-η2)Z{2}K(Z±S){D0}

K(Z±S±p)；  
Satisfy:(1-ηK

2)K(Z±S±p)=(1-η2)K(Z±S-p)+(1-η2)K(Z±S±0)+(1-

η2)K(Z±S±p)；                                                                      （ ）6.4  

 (1-ηK
2)K(Z±S±0)=∑(1-ηK

2)K(Z±S-p)+∑(1-ηK
2)K(Z±S±p)；          （ ）6.5  

 
where: (ηK

2)K(Z±S±p) represents the topology, probability 
properties, or direction of the circle (plane, surface). (ηK)K(Z±S±p) 
represents the topology, the nature of the probabilistic property 
or the nature or direction of the line (axis, curve). 

heve：   
 

 (1-η2)K(Z±S±p)=[(1-η2)K(Z±S±p±0)+(1-η2)K(Z±S±p±1)+… 
+(1-η2)K(Z±S±p±p)+…+(1-η2)K(Z±S±p±q                                    6.6 
 
The circular logarithm factor is the arithmetic four arithmetic 
operation:    
  

heve：        
       
(η2)K(Z±S±p)=(η2)K(Z±S±p±0)+(η2)K(Z±S±p±1)+… 
+(η2)K(Z±S±p±p)+…+(η2)K(Z±S±p±q)]             '                          （ ）6.7  
 

and：       
 
 (η) K(Z±S±p)=(η) K(Z±S±p±0)+(η)K(Z±S±p±1)+… 
+(η) K(Z±S±p±p)+…+(η)K(Z±S±p±q)]                                         （ ）6.8  
 
The limit of the ζ function and the logarithm of the circle 
 

The Riemannian function and the limit of the logarithmic 
equation are another part of solving the Riemann conjecture. 

heve：    

  ∏(1-η2)K(Z±S±N±p)=∑(1-η2)K(Z±S±N±p)=(0,1)；                   （ ）7.1  
 
Establish simultaneous equations  
 

(1-η2)K(Z±S±N±p)=(1-η2)K(Z±S±N±p)·(1-η2)K(Z±S±N±p)={0,1} (Z±S±N±p)；                    
（ ）7.2        
(1-η2) K(Z±S±N±p)=(1-η2) K(Z±S±N±p)+ (1-η2) K(Z±S±N±p)= {0,1} 

K(Z±S±N±p)；      
                                                                                                                                                               （ ）7.3  
Solving simultaneous equations: Elementary algebra is easy to 
get the limit of Riemann's function and circular logarithm 
equation 
 

∏(1-η2)K(Z±S±N±p)=∑(1-η2)K(Z±S±N±p)=(1-η2) 

K(Z±S±N±p)={0,1/2,1}K(Z±S±N±p)；                                         （ ）7.4  
 

By giving the non-normal zeros of the real part of the complex 
zero point on the critical line, with the infinite zero error fully 
developed, the real-complex function is relatively symmetric. 
The zero point is 100% {1/2}K (Z±S ±N±p); 
that is:    
 

 ζ(x)=O(x(1/2)+ε)).(x(1/2))=(1/2)K(Z±S±N±p);(ε=x(+ε)=0);       (7.5) 
               

there by solving the real complex zero root problem of 
Riemannian function or algebraic equation. 
 

This paper proves that the Riemannian function is guaranteed 
by the unit log logarithm, the isomorphic logarithm, the 
reciprocal circular logarithm (called the three one gauge 
invariance), and the circular logarithmic limit (and 
parallel/serial) combination. The distribution within its children 
can be uniform and non-uniform, continuous and 
discontinuous, symmetric and asymmetric, sparse and non-
sparse, closed and unclosed regions, random and regular, and 
so on. The superiority of the algorithm of circular logarithm is 
that the unit internal sub-item is expanded in the unit body 
(physical "quantum") of {0 and 1}K(Z±S±p), ensuring its position 
and data unchanged. , to meet the function and independence, 
privacy, to meet the blockchain requirements. 
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logarithmic analysis of Goldbach conjecture conjecture  
 

In 1742, the Goldbach Problem proposed the conjecture that 
"the sum of any two large enough prime numbers is 
even."Euler's analysis of Goldbach's conjecture is divided into 
two categories: "Strong Goldbach Conjecture" and "Weak 
Goldbach Conjecture."  
 

(1) Each pure even number (n≥6) can be expressed as 
the sum of two prime numbers (n=p1+p2); it belongs 
to“Strong Goldbach Conjecture”. 

(2) Each odd even number (n≥9) can be expressed as the 
sum of three prime numbers (n=p1+p2+p3); it belongs 
to the“weak Goldbach conjecture”. 

According to Euler's thoughts on Goldbach's conjecture, the 
analysis of "odd conjecture" also has two kinds of "strong odd 
conjecture" and "weak odd conjecture". 
 

Each pure odd number (n≥3) can be expressed as the sum of 
three prime numbers (n=p1+p2+p3); it belongs to“strong odd 
number conjecture”. 
 

Each odd odd number (n≥3) can be expressed as the sum of 
two prime numbers (n=p1+p2); it belongs to the“weak odd 
number conjecture”. 
 

According to the reciprocal law of prime number 
multiplication, the reciprocal positive function (average value) 
and the reciprocal function (average value) will appear at the 
same time, where the sum of the sums is the sum of the positive 
numbers or the reciprocals. 
 

In 1919, Buren transformed the "screening method" to prove 
that "each even number is the sum of two integers with no 
more than nine prime factors." Shortly referred to as "9+9". 
The Buren method can be similarly defined (a+b), and by 
reducing the size of (a and b) continuously, and then decreasing 
to 1+1, it also proves the Goldbach conjecture. With the 
method of Buren, the result of Goldbach’s conjecture, the 
progress of the well. 
 

In the 1920s, Hardy and Littiewood created the "circle 
method", and the equation (n = p1 + p2 + p3) was obtained by 
using the integral interval (0~1). The sum of prime numbers. 
Called "odd conjecture" 
 

In 1937, Venoladov transformed the traditional circle method 
and proved that each sufficiently large odd number (n≥9) is the 
sum of three prime numbers. How big is this "full size", 
Borozdin is calculated to be 3^315, and later improved to 
e^e^16.038. From 2012 to 2013, France's Chalodhoheov fell to 
10^30. 
 

In 1924, Lademahai proved "7+7"; later there were "6+6", 
"5+5", "4+4"... 
 

In 1955, with the help of Hua Luogeng, Wang Yuan proved 
"1+3", and before Pan Chengtong proved "1+5, 1+4", 
 

In 1967, Chen Jingrun improved the screening method and 
proved "1+2". "The large even table is a prime number and a 
sum of no more than two prime numbers." . 
 

In 2012, T.Tao of UCLA completely proved without the help 
of GRH: every pure odd number (n≥3) can be expressed as the 
sum of five prime numbers (n=p1+p2+p3+p4+p5); 
 

In particular, this paper considers Chen Jingrun's proof of 
"1+2" (n=p1+p2p3), where "2" = (p2p3) can solve any two prime 
numbers using the infinite multivariate quadratic equation of 
elementary algebra (P2, P3 ). (P2P3) is equivalent to (P2^

-1+P3
^-

1)^-1 The sum of the reciprocal of the two prime numbers is an 
even odd number. That is to say, each even odd number can be 
expressed as the sum of the reciprocals of two prime numbers, 
and ",one prime number plus one even odd number is even 
number" is obtained. Facts Chen Jingrun has successfully 
proved the "weak Gothbach conjecture" in 1967, and also 
proved the "weak odd number conjecture" (each even odd 
number can be expressed as the sum of the two prime 
numbers). Here we apply the theory of circular logarithm to 
prove: add (see below). 
 

So far, the study of Goldbach's conjecture did not use the 
Riemann conjecture, but the generalized Riemann conjecture to 
estimate.This article is here to prove the Goldbach conjecture 
(including the odd conjecture) using the non-normal zero of the 
circular logarithmic application ζ function. 
 

Goldbach’s conjecture is to say “two prime numbers add up”. 
Under normal conditions, two sufficiently large prime numbers 
are not equal, expressed as two prime numbers (a±b)= {x±D}, 
because (a≠b)=[{x0≠D0}]K(Z±S)After the imbalance, (1-η2)Z is 
extracted and converted to relative balance, 
 
get:                     {x0=D0}

 K(Z±S±N±p)；                                 （ ）8.1  

heve：        {x±D)K(Z±S±N)= AxK(Z±S±N±0)+ BxK(Z±S±N±1)+… 
+PxK(Z±S±N±p)+…+QxK(Z±S±N±q) ± D 
= C(S±0)x

K(Z±S±N+0)D0
K(Z±S±N+0)+ C(S±1)x

K(Z±S±N+0)D0
K(Z±S±N+1)+… 

+ C(S±p)x
K(Z±S±N-p)D0

K(Z±S±N+p)+…+ C(S±q)x
K(Z±S±N-q)D0

 K(Z±S±N+q) ± 
D 
=(1-η2)Z{x0±D0)

K(Z±S±N)  
= (1-η2)Z{0,2}K(Z±S){D0}

K(Z±S±N)；                                      （ ）8.2  
In the formula (8.2), in (a+b) composed of two prime numbers, 
a={x} K(Z±S±N+p);b={D} K(Z±S±N+p)，  which proves that each 
prime number (a, b) can have a sum of 1 to infinity prime 
factors. 
there is: small zero balance: 

a-b）={x-D)K(Z±S)=(1-η2)Z{0}K(Z±S){D0}
K(Z±S±N)；             （ ）8.3  

large zero balance: 

（a+b）= {x+D)K(Z±S)=(1-η2)Z{2}K(Z±S){D0}
K(Z±S±N)；                     

（ ）8.4  
 

Equations (8.1) to (8.4) reflect the existence of a theory called 
circular logarithm. It can be proved that any composite number 
can be composed of infinite prime factors, and the sum of the 
last prime numbers can be summarized into two and three 
prime factors. The parity of the number of components. 
 

Here, the abnormal zero {1/2}-Z applied by the Riemann 
conjecture proves that the Goldbach conjecture is established: 
 

A prime polynomial established by any number of prime 
numbers. Further, the prime function can be normalized to any 
prime number (or composite number) such that each prime 
number has the same number of zeros (including abnormal 
zeros). 
 

The reciprocity of the prime function proves that the prime 
number can be composed of a minimum of 2 (even) and 3 
(odd) prime factors. 
 



Wang Yiping., Analysis of Riemann-Goldbach Conjecture Based on Circular Logarithm 
 

33956 | P a g e  

The abstract circle with no specific prime content is established 
by the prime polynomial to solve the " big O of 1" problem. 
The ζ function is between [0~1] of the logarithm of the circle 
(that is, the distribution and value of the infinite prime number 
between 0 and 1). 
 

By ∏(1-η2)K(Z±S±N±p)=∑(1-η2)K(Z±S±N±p)，indicating that the 
prime number congruence is an even number or The singularity 
can also be converted to a logarithmic circular logarithm or a 
singular circular logarithm. 
 

a. The sum of two prime couples of arbitrary infinity can 
be expressed as infinitely pure even numbers. 

b. The sum of the three prime singularities of any 
infinity can be expressed as an infinite singular even 
number.  

 

CONCLUSION 
 

This paper gives a lot of information and finds that prime 
multiplication can be a combination of reciprocal mean and 
positive mean, and establishes the logarithm theory. The 
realization of the circular logarithm theory proves that the 
Riemann conjecture has no hypothesis. 
 

Through the ζ function, the unitary property of the circular 
logarithm theory (1-ηH

2)K(Z±S±N±p), isomorphism (1-
ηD

2)K(Z±S±N±p), reciprocity ( 1-ηK
2)K(Z±S±N±p) three one gauge 

invariances, proved:  
 

Any prime number (including prime factors) can be normalized 
to a prime number (or integer) within the same power 
dimension. That is, "the S-th power of the sum of the two S-th 
powers (S≥2) can be an integer solution" (prime, integer). (See 
also 2019 ICCM Conference Wang Hongxuan and Wang 
Yiping's paper "Based on the circular logarithm proof Fermat-
Wills theorem does not hold") 
 

The distribution of prime numbers is within the boundary of 
[0,1]K(Z±S±N±p), and (1-ηH

2)K(Z±S±N±p)=1 is successfully achieved, 
forming “ The large O of 1” (ie, the prime distribution problem 
between [0 and 1] and the infinite non-normal zero 
{1/2}K(Z±S±N) are on the critical line of completeness). 
 

The infinite prime function  (1-η2)K(Z±S±N) limit is 
{1/2}K(Z±S±N±p),, that is, all non-trivial functions of the ζ 
function (including calculus) The real part of the zero point is 
{1/2}, and the infinite prime number has an infinite number of 
infinite non-normal zeros. Among them, the twin prime guess 
and the Goldbach conjecture (including the odd conjecture): 
both contain the non-trivial zeros of the Riemann conjecture: 

{1/2}K(Z±S±N±p)={0,1/2,1}(Z±S±N±p)。(K=+1,0,-1)； 
 

Unified:        W = (1-η2)K(Z±S±N)·W0；                              （ ）9.1  
 (1-η2)K(Z±S±N)=(1-ηD

2)K(Z±S±N±p)·(1-ηH
2)K(Z±S±N±p) ·(1-

ηK
2)K(Z±S±N±p) 

(1-η1
2)K(Z±S±N±0)  0  0 … 0 … 0 

                 0  (1-η2
2)K(Z±S±N±1)    0 … 0 … 0          

=    {……}                                             （ ）9.2  
            0    0 …(1-ηp

2)K(Z±S±N±p)… 0 … 0  
  0  0   0 … 0 … (1-ηq

2)K(Z±S±N±q)  

0≤(1-η2)K(Z±S±N±p)≤1； （ ）                           9.3  
where: W,W0 , and {X0}

K(Z±S±N±p),{D0}
K(Z±S±N±p), representing 

any infinite unknown, any limited number of known infinite 
primes Dimensional prime algebraic clusters and mean values. 

(1-ηD
2)K(Z±S±N±p)·(1-ηH

2)K(Z±S±N±p) ·(1-ηK
2)K(Z±S±N±p) .Three norms 

invariance 
 

The circular logarithm reforms the traditional logarithm, 
traditional calculus and logical algebra into arithmetic four 
operations. Thus, the ζ function in the number theory 
application (there is no "error analysis" item) can achieve zero 
error "four operations without specific element content". As a 

mathematical algorithm, it can be ex性tended to the scientific 
theory and engineering application of multidisciplinary fields 
(algebra, geometry, numerical, life science, supercomputer, and 
topology, probability, chaos). 
 

In practice, the theory of circular logarithm has solved a 
number of world mathematics problems. It is logical to show 
the "avenue to simplicity" of the logarithm of the circle, with 
powerful computational vitality and magical effects. It is 
expected to carry out the great unification of mathematics. 
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