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The study focuses on mathematical modelling of tumor progress during angiogenesis process. It is 
the stage through which the tumor changes from being avascular to vascular. Nonlinear partial 
differential equations are used to describe the interactions between endothelial cells, fibronectin and 
tumor angiogenetic factors in the development of new blood vessels. The model aim to explain the 
spatial distribution of endothelial cells through diffusion, proliferation, chemotaxis, haptotaxis, and 
cell loss due to decay. The continuous equations obtained are solved using the Finite Difference 
method. 
 
 
 

 
 
 
 
 
 
 

 

 
 

 

 
 

 
 

 
 

 
 
 
 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 
 
 
 
 
 
 

  
 
 
 

INTRODUCTION 
 

Cancer is a life nasty disease of epidemic extents. World 
Cancer Reporthighlighted that trends in cancer escalating rate 
and mortality worldwide is growing quickly. The success of a 
tumor treatment be subject to on it being suitable for the type of 
tumor involved. Therefore it is very necessary to understand 
and recognize the different forms of tumors, and the processes 
and stages involved in their development and growth. 
 

Tumor develop in three main stages, the avascular phase 
(benign), the vascular phase and the malignant phase (cancer). 
The stages are illustrated in Figure 1, and are described below. 
 

 
 

Figure 1  Stages of tumor invasion 
 

A tumor in the avascular phase is non-cancerous (benign). In 
this stagethe tumor is less than about two millimeters in 

diameter, it is improbable to be harmful; if it grows in a critical 
body organ then it will only cause serious health problems or if 
it becomes too large. However without its own blood vessels 
the survival of any tumor is depends on diffusion of oxygen 
and nutrients from neighboring blood vessels and for removal 
of waste products to these blood vessels [1]. So at this stage, a 
tumor usually grows very slowly and does not proliferate or 
spread to other tissues or organs. In this early stage a tumor can 
usually be removed or be treated with radiation. When 
removed, benign tumors do not usually regrow. Though, if they 
are not treated or removed at this stage, they may develop into 
cancer. 
 
MATHEMATICAL MODELLING 
 
The largest blood vessels are arteries and veins, which have a 
thick, tough wall of connective tissue and many layers of 
smooth muscle cells. The wall is lined by an exceedingly thin 
single sheet of endothelial cells, the endothelium, separated 
from the surrounding outer layers by a basal lamina. Thus, 
endothelial cells line the entire vascular system, from the heart 
to the smallest capillary, and control the passage of 
materialsand the transit of white blood cells into and out of the 
bloodstream. 
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Angiogenesis is initiated when a tumor discharges a diffusible 
tumor angiogenic factors into surrounding tissues (the extra 
cellular matrix), which eventually reach nearby blood vessels. 
These factors allow degradation of the basement membrane 
lining the blood vessels, thereby releasing endothelial cells 
from the lining. As the endothelial cells are stimulated to 
follow the chemical gradient of tumor angiogenic factors so 
they migrate towards the tumor until they form capillary 
sprouts which eventually penetrate it. This chemotatic response 
to the tumor angiogenic factors secreted by a tumor, is also 
enhanced by fibronectin, which is secreted by the endothelial 
cells. 
 

We consider a situation in which a restricted tumor triggers an 
angiogenic response from a neighboring blood vessel. The 
process can be modelled in terms of concentration of tumor 
angiogenic factors, endothelial cell density and the 
concentration of fibronectin. Fick’s law is used to model the 
diffusion of the tumor angiogenic factors, which creates the 
concentration gradient. 
 

When formulating equations that model endothelial cell 
development, including authors like Anderson and Chaplain [1] 
and Holmes and Sleeman [2] consider the cell flux. Cell flux is 
a term used to describe the movement of endothelial cells. 
Some authors consider two factors which influence the cellular 
movement. These are first diffusion, which is the random 
molecular movement of chemicals, and then chemotaxis, which 
is a directional movement of cells along a chemical gradient 
[30]. 
 

In this work we will derive the total cell flux through on spatial 

position x during time t. ( ,  )G x t  represents a tumor 

angiogenic factor concentration. Similarly, ( ,  )F x t  and 

( ,  )C x t  will represents fibronectin and endothelial 

concentration respectively. [1,2,5,6]. Following the work of 
Anderson and Chaplain [1] and Edelstein-Keshet [7], we 
formulated an equation governing the total cell flux as follows: 
 

         
Total Random Chemo Hapto

C C C C      

  (1) 

where Total
C  represents the total collection of endothelial cells 

present, Random
C  represents endothelial cells due to random 

diffusion, Chemo
C  represents endothelial cells due to 

chemotaxis, Hapto
C  represent cells due to haptostaxis. The 

random flux is given as 

,
cRandom

C D C      

  (2) 
 

Where E
D  represents a cell random positive constant and 

A  is the rate of change of the concentration of of 
endothelial cells. The chemotatic flux is given by: 

( )
Chemo

C B C C G �     

                                                                              (3) 

Where  ( )B C  is the term for chemotaticfunction. C is a term 

for endothelial cells and G is the rate of change of tumor 
angiogenic factors. Following a receptor kinetic law, the 
chemotatic function can then be defines as: 
 

1

0

1

( )
K

B C B
K C




    

                                                                               (4) 
 

where 0
B  is the chemotatic coefficient and 1

K  is a positive 

constant. The haptotatic flux can also be defined as follows: 
 

1Hapto
C C F       

                                                                                 (5) 
 

where 1  is a positive constant called the haptotatic coefficient 

and F  is the rate of change of fibronection concentration. By 
substituting Equations (2), (3), (4) and (5) into (1) we get the 
equation for the total cell flux as: 
 

1
( )

Total c
B C C GC D C C F   �   

                                                                                                                                                           (6) 
 

where   is a positive constant associated to maximum loss 

rate. It can be concluded that the rate of increase of endothelial 

cell concentration can be written as follows: if *G G no 
proliferation will take place and 

 

2 1

1

1

C C

KC
D C B C G C F C

t K C
 


      

 
 (7)

                                                          

but if *G G  mitosis will take place and 
 

*

2 1

1 1 2

1 0 0

1
C

KC C G G
D C B C G C F C C

t K C C G
  

 
          

 

   
   
   

 (8)

                                                                         

for 
*

0
G G . 

 

We accept that the tumor angiogenic factors diffuses, depletes 
and decays. Thus the rate of change of tumor angiogenic 
factors concentration in a specific region can be denoted by: 

 

     2

G

G
D G f G g C h G

t


   


   

                                                                             (9) 

where 
G

D , is tumor angiogenic factors diffusion coefficient. 

The function  f G  represents the local uptake of tumor 

angiogenic factor by endothelial cells, which is linearly 
dependent on cell density and so it can be expressed as follows: 

 
max

QG
f G

K G



    

                                                                            (10) 
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where
max

K  is the Michaelis–Menten kinetic law constant 

which is equivalent to the concentration of tumor angiogenic 

factors required to achieve a reaction rate of 2Q , where Q is 

maximum reaction uptake rate. 

The function  g C  is a strongly increasing function which can 

be expressed as  
0

g C C C , where 
0

C  is the maximum 

amount of endothelial cells that can use the tumor angiogenic 
factors within the specified boundary with zero flux boundary 

condition.  ( )h G is the decay rate for tumor angiogenic factors 

which are taken as: 
 

 h G dG      

                                                                                                                                                               (11) 

where d  is the tumor angiogenic factors decay rate. The rate of 
change of the tumor angiogenic factor then written as: [1, 2, 3] 

 

2

0

max

G

G QG
D G C C dG

t K G


   

 

 
 
 

               (12)

                                                   
Now, we assume that the equation governing the rate of change 
of fibronectin concentration has terms for: diffusion, secretion 
by endothelial cells, loss due to cell-cell adhesion and loss due 
to decay. Thus it can be expressed as follows: 

 

2 F F

F F F

CF
D F s CF Fa

t F







    

 
             (13)

   

where F  is the secretion rate,   is a positive constant, Fs  

is the uptake rate of fibronectin by endothelial cells and 
F

  is 

the decay rate of fibronectin. The term F F
C

a
F



 
represents the 

concentration of fibronectin which is secreted by endothelial 
cells. Models already developed do not consider concentration 
of oxygen and glucose because as Ward and King [11] suggest 
it can be neglected in the interior of larger spheroids. 
 

Numerical Solution  
 

The systems of equations shown in Equations (8), (12) and (13) 
are all nonlinear parabolic differential equations. They are one 
space dimensional, because x is the only independent spatial 
variable involved. Solving them needs that they are first 
nondimensionalized as in Holmes and Sleeman [2]. The 
distance from the parent blood vessel to tumor is given to be L 

is, and the time
2 / GL D  , and by setting appropriate 

reference variables. Therefore, we obtain  
 

0 0 0

, , , ,
G C F x t

G C F x t
G C F L 

     ,  We also 

0 0 0 0

, , , ,m
kTQ Td

G G G F


      

0

0

0

, , , ,F

F F

TC
TS C T T

F


        

 1 0 0 0

0 22 2 2 2 2
, , 1 , , ,G CF

F G C

TG B TG TD TDTD
T B d d d

L L L L L


       

[2]. 

 
Dropping the bars, the following non-dimensionalized systems 
are obtained from (12), (13) and (8) respectively: 

2

2
,

F

F F CF
d CF F

t x F


 



 
   

  
   

 (14) 
2

2
,

G

G G CG
d G

t x G






 
  

  

 
 
 

   (15)

   

 
2 2 2

1

0 02 2 2

1

1 ( )
C

KC C C G G C F F
d B C C C C I G C

t x K C x x x x x x
  

       
       

        

                       

                                                                                          (16) 
The initial condition that will be used in this work are derived 
from those given by Holmes and Sleeman [2] and Eleondou 
[3]. 
 

Finite Difference Scheme to the Model for Fibronectin 
 

When solving equation (18) using the finite difference scheme 
it becomes: 
 

1 1 11 1

1 1 1 1

2

2 2

2 2

j j j j j ji j j j j j

i i i i i i j ji i i i i i

F i ij

i

F F F F F FF F C F F F
d C F k

t x F
 



   

   
     

   
  

  

 
 

Let 
0

1 2M D v   and  
1

1 2
j j j

i ii
P R V R      . We 

then obtain a tridiagonal matrix like this for 0,1,2....j n  
 

1

1
0

1

2
0

1

30

1

0 1

1

0

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

j

j

j

j

i

j

i

FP

FP P

FP P

P P F

P F

























 

 

      

      

 



  
  
  
  
  
  
  
  
  
       

 

 

 

 

 

1
1

1

1 2

31

11

1

0 0 0 0
2

0 0 0
0

0 0 0 0

00 0 0

2
0 0 0 0

j
j

ji

j
j

i

j j

i

j j

ii

jjj

i
i

i

v P F
P F

P v P F

FP v P

FP v P

P FFP v





          

       



                                                           

 

                                                                                        (17) 
Finite Difference Scheme to the Model for Tumor Angiogenic 
Factors 
 

As in the previous section, the solution of equation (15) is 
obtained by applying the Finite difference scheme in discrete 
form as: 
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1 1 11 1

1 1 1 1

2

2 2

2 2

j j j j j ji j j j j j

i i i i i ii i i i i i

A j

i

G G G G G GG G C G G G
d

t x G
 



   

   
     

  
  

      (18)             

Let
0

1 2M D v   and 

 
1

1 2 0,1,2,3,.... ,
j j

ii
v M X D For j n     Equation  

(18) can be written as a tridiagonal matrix, like shown below: 
 

1

1
0

1

20

1

30

1

0 1

1
0

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

j

j

j

j

i

j

i

Gv M

GM v M

GM v M

M v M G

M v G















 

 

      

      

 



  
  
  
  
  
  
  
  
  
  
   

 

 

 

 

 

1
1

1

1 2

31
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1
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2

0 0 0
0
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00 0 0

20 0 0 0

j
j
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j
j

i

j j

i
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ii

jjj
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i

v M G M G

M v M G

GM v M

GM v M

M GGM v





          

       



                                                           

 

                                                                                             (19) 
 
Finite Difference Scheme to the Model for Endothelial Cells 
 
Then applying the Finite difference approximation to equation, 
We get 
 

 

1 1 11

1 1 1 1

2

2 2

2

j j j j j jj j

i i i i i ii i

C

C C C C C CC C
d

t x

  

   
    


 

  
 

 
   

1 1 1 1

1 1 1 1 1 1 1 11

1

1

4 4

j j j j j j j j

i i i i i i i i

j

i

C C C C G G G GB K

K C x x

   

       
     

   
  

      

 
 

1 1 1

1 1 1 1

1 2

2 2
1

2

j j j j j j

i i i i i ij

i

G G G G G G
C B K

x

  

   
    




  

   

1 1 1 1

1 1 1 1 1 1 1 1

4 4

j j j j j j j j

i i i i i i i i
C C C C F F F F

x x


   

       
     

 
 

      

 

1 1 1
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2
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2

j j j j j j

i i i i i ij

i

F F F F F F
C

x


  

   
    

 


  
 

   
1

0
1

2

j j

j j j i i

i i i

C C
C C I G 




  
                           

(20) 

 

Using equation (20), which is the conservation equation for 

endothelial cells,After substituting for for j 1,2,3,.....,n  in 

equation (34) then we got system of linear equations which is 
then expressed as this tridiagonal matrix: 

 

   

   
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  
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(21)

                                                                                                                             

 
The Method has been proved to be stable and reliable. Its 
stability has been proved in [40]. 
 

RESULTS AND DISCUSSION 
 

Matrices (17), (19) and (21), were solved numerically using 
Matlab software. Parameter values, boundary and initial 
conditions are taken from published literature, and the results 
obtained are discussed below.Matrix (19) generated earlier in 
this chapter was then converted to Matlab codes, following 
previously published approaches [4,8] for generating Matlab 
codes. Accordingly Figure 1 illustrates the concentration of 
tumor angiogenic factors in the space between the tumor and 
blood vessel during angiogenesis specifically at 1, 3, 7, 9 and 
10 days from the start. In this work we assume the angiogenesis 
process is completed after 10 days. Results indicate that the 
concentration of tumor angiogenic factor in the space between 
the tumor and blood vessel at different times. Results indicate 
that as time progresses, that is as the value of t increases, the 
level of tumor angiogenic factors decreases. This would occur 
because some of the tumor angiogenic factors was used to 
degrade the basement membrane on the blood vessel and other 
chemical is lost due to decay. 

 
 

Figure 1 Spatial Distribution of the Concentration of Tumor Angiogenic 
Factors at different times 
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Matrix (17) generated earlier in this chapter was then converted 
to matlab codes, following previously published approaches 
[4,8] for generating Matlab codes.Figure 2 illustrates the 
concentration of fibronectin in the region during different times 
of angiogenesis; that is 1, 3, 5, 7, 9 and 10 days. The graphs 
indicates that, fibronectin behaved in the same way as 
endothelial cells. Graphs indicate that as time progresses, 
fibronectin concentration decreases with distance away from 
the blood vessel. 

 
 

Figure 2 Spatial Distribution of Fibronectin concentration at Different Times 

 
Matrix (21) producedprevious in this section was then 
converted to Matlab codes, following previously published 
methodologies [4,8] for generating Matlab codes. Figure 
3explains the concentration of endothelial cells in the region 
during these different times of angiogenesis; 1, 3, 5, 7, 9 and 10 
days. 
 

 
 

Figure 3 Concentration of Endothelial Cells at Different Times 
 

Results shows that the endothelial cells discharge from the 
blood vessel and they migrate towards the tumor. It is noticed 
that as time progresses the distance between the endothelial 
cells and the tumor decreases until and they ultimately reach 
the tumor. In this way they complete the process of 
angiogenesis.  
 
 
 
 

CONCLUSION 
 

Parabolic partial differential equations governing the 
conservation of tumor angiogenic factors, fibronectin and 
endothelial cells have been developed. A finite difference 
method, is applied to solve them. The matrices acquired are 
then simulated with the help of Matlab, using parametric values 
already published or those chosen to suit this study. The results 
designate the concentration of tumor angiogenic factors is 
greater nearby the tumor boundary, but moves towards the 
blood vessel as time progresses. At the same spellfibronectin 
and endothelial cells are also detected to migrate towards the 
tumor, and eventually reach it. That indicates that angiogenesis 
is the process of transition for the tumor from being avascular 
to become vascular. As such this confirms that our model is 
realistic. 
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