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In this paper, with the aid of the Wolfram Mathematica or Matlab software the powerful, the 
Adomian decomposition method (ADM) is used to found the numerical solution of Lorenz chaotic 
system.  It is shown that the method is straightforward and effective mathematical tool for solving 
this system. We make a comparison between our method and another method to illustrate the 
accuracy of this method.  Finally, we submit comprehensive conclusions. 
 
 
 
 
 

 
 

 
 
 

 
 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 
 
 
 
 
 
 

 
 

 
 

 

  
 

 
 

INTRODUCTION 
 

The Chaotic Lorenz system is a system of ordinary differential 
equations first studied by Edward Lorenz (1963) see [1]. It is 
notable for having chaotic solutions for certain parameter 
values and initial conditions. In particular, the Lorenz attractor 
is a set of chaotic solutions of the Lorenz system which, when 
plotted, resemble a butterfly or figure eight. 
 

The Chaotic Lorenz system also arises in simplified models for 
lasers [2], electric circuits [3], chemical reactions [4], forward 
osmosis [5] and so on. 
 

From a technical standpoint, the Chaotic Lorenz system is 
nonlinear, non-periodic, three-dimensional and deterministic. 
The Lorenz equations have been the subject of hundreds of 
research articles, and at least one book-length study [6]. 
 

The Adomian decomposition method (ADM) is a semi-
analytical method for solving ordinary and partial nonlinear 
differential equations. The method was developed from the 
1970s to the 1990s by George Adomian, chair of the Center for 
Applied Mathematics at the University of Georgia [7, 8]. 
 

This paper is organized as follows: In Section 2, we introduce 
the Chaotic Lorenz system. In Section 3, we analysis the 
proposed method. In Section 4, comparison between results for 
our method and results obtained from fourth- Order Runge-
Kutta Technique (RK4). In Section 5, numerical results are 

discussed. Finally, the conclusion of this study is given in 
section 5. 
 

The Lorenz Chaotic System 
 

We consider famous Lorenz system as (see[9]), 
 

��

��
= �(� − �),																																																																																(1)

��

��
= �� − � − ��,																																																																									(2)

��

��
= �� − ��,																																																																																			(3)

 

 

where �, � and � are respectively to the convective velocity, the 
temperature difference between descending and ascending 
flows, and the mean convective heat flow, and �, � are called 
bifurcation parameter which are real constants. Throughout this 
paper, we set �	 = 	10, �	 = 	−8/3	and the parameter � it is 
well-known that chaos sets in around the critical parameter 
value �	 = 	28	where the system exhibits chaotic behavior. 
 

Analysis of the methodology 
 

ADM for solving chaotic Lorenz's system 
 

In this subsection, we present direct application of the ADM to 
the Lorenz system (1)-(3). First, note that the Lorenz system is 
a special case of a more general (homogeneous) system of 
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ODEs where the nonlinear term occurs as products of two of 
the dependent variables. This general system, which was 
previously studied by Vadas P. (see [10,11]) is given by: 
 

��
� ∑ ����� +

�
���

∑ ∑ ��������,						∀� = 1,2, … , �.																		�
���

�
���                  (4) 

 

Where the derivatives are with respect to time �. If we denote 
the linear term (the first term on the r. h. s.) as �	��and the 
nonlinear term (the second term) as ���there we can write the 
above system of equations in this form: 
 

��� = ��� + ���,							∀� = 1,2, … , �.																																												 (5) 
 

Where L is the differential operator 	� ��� . 
 

Now we applying the inverse (integral) operator��� to (5) we 
obtain  
 

��(�) = ��(�
∗) + ������ + ������,				∀� = 1,2, … , �.				         (6) 

 

Here we have assumed that the general system (4) (or 
equivalently (5)) is an initial-value problem so that it's solution 
is uniquely determined via the information��(�

∗)						∀� =
1,2, … , �.			 According to the ADM(see [8]), the solution ��(�) 
is given by the series, 
 

��(�) = ∑ ���(�),													∀� = 1,2, … , �.																∞
��� 													(7) 

 

Then, the linear term �	�� then becomes 
 

��� = ∑ ∑ ������,																																																													
∞
���

�
��� (8) 

 

Thus,������ is given by 
 

������ = ∑ ∑ ��� ∫ ���				��,						
�

�∗
∀� = 1,2, … , �.					∞

���
�
���    (9) 

 

The nonlinear term ���is decomposed as, 
 

���		 = ∑ ∑ ���� ∑ ���,�,�
∞
���

�
���

�
��� . 

 (10) 

where the���,�,� are the so called Adomian polynomials. In 

this case, it is given by the formula,  
 

���,�,� =
�

�!

��

���
��(∑ �����

∞
��� , ∑ �����

∞
��� )�

���
 (11) 

Where�(�, �) = ��for each � = 0,1,2, … Moreover ������is 
given by 
 

������ = ∑ ∑ ���� ∑ ∫ ���,�,�		��
�

�∗
∞
���			

�
���

�
���  (12) 

Substituting (7),(9),(12)into (6) we then have for each � =
1,2, … , � 
  

∑ ���(�) = ��(�
∗) + ∑ ∑ ���	 ∫ ����� +

�

�∗
∞
���

�
���

∞
���

∑ ∑ ���� ∑ ∫ ���,�,�		��
�

�∗
∞
���			

�
���

�
��� (13) 

Therefore, we have for each � = 1,2, … , � 
��� = ��(�

∗), (14) 

��� = ∑ ��� ∫ ����� + ∑ ∑ ���� ∫ ���,�,���	,
�

�∗
�
���

�
���

�

�∗
�
���  (15) 

��� = ∑ ��� ∫ ����� + ∑ ∑ ���� ∫ ���,�,���	,
�

�∗
�
���

�
���

�

�∗
�
���  (16) 

��,(���) = ∑ ��� ∫ ��,��� + ∑ ∑ ���� ∫ ��,�,�,���	,
�

�∗
�
���

�
���

�

�∗
�
���  (17) 

After calculating the Adomian polynomials (11) and 
integrating, one then has for 

all� ≥ �∗,��(�) = ∑ ���
(���∗)�

�!

∞
���  , ∀	� = 1,2, …�. (18) 

Where the coefficients ���are given by 
��� = ��(�

∗), (19) 

��� =
∑ �����(���) + (� −�
���

1)!∑ ∑ ∑ ����
�
��

�!

��(�����)

�!(�����)!

���
���

�
���

�
��� 		� ≥ 1 (20) 

 

Hence, from (18) – (20), the explicit solution to the Lorenz 
system (1) – (3) is 

� = ∑ ��
(���∗)�

�!

∞
��� , 

� = ∑ ��
(���∗)�

�!

∞
��� ,(22) 

� = ∑ ��
(���∗)�

�!

∞
��� , 

where the coefficients are given by the recurrence relations, 
 

�� = �(�∗) , �� = �(�∗) , �� = �(�∗), 
�� = −����� + �����, � ≥ 1 

�� = ����� − ���� − (� − 1)! ∑
��������

�!(�����)!

���
���  , � ≥ 1 

�� = ����� + (� − 1)! ∑
��������

�!(�����)!

���
���  ,	� ≥ 1 

Then, by using the Mathematica program we obtain that: 
�� = −15.8 − 16.80� + 774.960�� + 2170.52533�� 
�� = −17.48 − 138.192� + 1426.1160�� + 7682.957638�� 
�� =
35.64 + 181.1440� − 1186.410134�� − 11745.60804�� 
 

Matlab code of RKU for solving Lorenz equations 
  

We construct a code of RK4 for get a numerical solution of the 
Lorenz's system as follow: 

�(1) = 0; 		%������������	�, �, �, �

�(1) = 1;

�(1) = 1;

�(1) = 1;
����� = 10; 			%�����	��	���������

�ℎ� = 28;
���� = (8.0/3.0);

ℎ = 0.01; 			%����	����
� = 0: ℎ: 20;

� = @(�, �, �, �)�����∗(� − �); 			%���

� = @(�, �, �, �)�∗�ℎ� − �.∗ � − �;

� = @(�, �, �, �)�.∗− � − ����∗�;

���	�	 = 1: (�����ℎ(�) − 1)%����

�1 = ���(�), �(�), �(�), �(�)�;

�1 = ���(�), �(�), �(�), �(�)�;

�1 = ���(�), �(�), �(�), �(�)�;

�2 = ���(�) + ℎ
2� , (�(�) + 0.5∗�1∗ℎ), (�(�) + (0.5∗�1∗ℎ)), ((�(�) + (0.5∗�1∗ℎ))�;

�2 = ���(�) + ℎ
2� , (�(�) + 0.5∗�1∗ℎ), (�(�) + (0.5∗�1∗ℎ)), ((�(�) + (0.5∗�1∗ℎ))�;

�2 = ���(�) + ℎ
2� , (�(�) + 0.5∗�1∗ℎ), (�(�) + (0.5∗�1∗ℎ)), ((�(�) + (0.5∗�1∗ℎ))�;

�3 = ���(�) + ℎ
2� , (�(�) + 0.5∗�2∗ℎ), (�(�) + (0.5∗�2∗ℎ)), ((�(�) + (0.5∗�2∗ℎ))�;

�3 = ���(�) + ℎ
2� , (�(�) + 0.5∗�2∗ℎ), (�(�) + (0.5∗�2∗ℎ)), ((�(�) + (0.5∗�2∗ℎ))�;

�3 = ���(�) + ℎ
2� , (�(�) + 0.5∗�2∗ℎ), (�(�) + (0.5∗�2∗ℎ)), ((�(�) + (0.5∗�2∗ℎ))�;

�4 = �(�(�) + ℎ, (�(�) + �3∗ℎ), (�(�) + �3∗ℎ), (�(�) + �3∗ℎ));

�4 = �(�(�) + ℎ, (�(�) + �3∗ℎ), (�(�) + �3∗ℎ), (�(�) + �3∗ℎ));

�4 = �(�(�) + ℎ, (�(�) + �3∗ℎ), (�(�) + �3∗ℎ), (�(�) + �3∗ℎ));

�(� + 1) = �(�) +
ℎ∗(�1 + 2∗�2 + 2∗�3 + �4)

6
; 		%�����	���������

�(� + 1) = �(�) +
ℎ∗(�1 + 2∗�2 + 2∗�3 + �4)

6
;

�(� + 1) = �(�) +
ℎ∗(�1 + 2∗�2 + 2∗�3 +�4)

6
;

���
����3(�, �, �)

 

 

When we execute the above program, we can confirm the 
famous figure "Butterfly effect". 
 
 
 



International Journal of Recent Scientific Research Vol. 9, Issue, 5(F), pp. 26916-26919, May, 2018 

 

26918 | P a g e  

 
 

Fig 1 The Lorenz's butterfly effect obtained by the RK4 technique 
 

Comparison between ADM and RK4 
 

After that, we treat the ADM  solutions as an algorithm for 
approximating the dynamical response in a sequence of time 
interval [0, ��), [��, �2), … . . [����	, �) which applied on the 
solution [12-14], we notice that the three projections of the 
curves obtained by the Runge-Kutta technique (see figure 1) 
are similar to those obtained by Adomian method (see figures 
2-4) 
 

 
Fig. (2): Solution X(t) for T = 20 Fig. (3): Solution Y(t) for T = 2, 

 

 
Fig 4 Solution Z(t) for T = 20 

 
 
 

So now we can compare the accuracy of the ADM on the 
chosen time step Δt = 0.01with the RK4 method on the chosen 
time step	∆� = 0.001. We choose this time step since a smaller 
one's computationally costly. (see [15-17]). 
 

We present the absolute error between the 10-term ADM 
solution at time step ∆� = 0.01 and the RK4 solutions on 
∆� = 0.001which given in table (1). 
 

Table 1 Differences between 10-term decomposition and RK4 
solutions for R=28 

 

t Δ = 0.01 0.001ADM  - RK4
 

Δx Δy Δz 
2 3.128E-08 5.292E-09 1.127E-09 
4 1.231E-08 6.274 E-09 8.715E-8 
6 1.191 E-07 2.416 E-06 1.941E-08 
8 4.077 E-07 6.118 E-07 1.709E-07 

10 3.182 E-06 2.948 E-05 2.226E-05 
12 2.023 E-07 1.970 E-05 1.191E-05 
14 2.173E-04 4.625 E-05 3.497E-04 
16 2.112 E-04 2.188 E-04 2.733E-04 
18 1.514 E-03 2.526 E-04 2.188E-04 
20 1.819 E-02 4.059 E-02 2.019E-02 

 

NUMERICAL RESULTS AND DISCUSSION 
 

To demonstrate the accuracy of the ADM against RK4, the 
simulations were done in this paper for the time �	 ∈ 	 [0, 20]. In 
this paper, we decide to use 10-terms in the Adomian 
decomposition series solutions. We note that increasing the 
number of terms improves the accuracy of the ADM solutions, 
but the expense of increased computational efforts. 
 

CONCLUSION 
 

The decomposition technique has been applied to solving the 
system of Lorenz. It gives a simple and powerful tool for 
obtaining the solution of differential systems. The three 
projections of the curves obtained by the Runge-Kutta 
technique (see Figure 4) are similar to those obtained by 
Adomian method (see Figures 1-3). It is a consequence of the 
theoretical properties of the decomposition method proved in 
Hashim. I (see [18-32]). Furthermore, we used 400 
subdivisions of [0, �] for the classical Rung-Kutta method and 
only 20 subdivisions of	[0, �] are sufficient for giving the same 
solution by the Adomian method. The convergence of the 
Adomian method is faster than Runge-Kutta technique. Unlike 
numerical Runge-Kutta method, Adomian's technique gives an 
exact solution in each subdivision without discretization of 
time. 
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